EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Strongly Interacting Fermi Gases in Reduced Dimensions

Download or read book Strongly Interacting Fermi Gases in Reduced Dimensions written by and published by . This book was released on 2009 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optically-trapped, strongly-interacting Fermi gases are models for exotic strongly-interacting systems in nature. For this reason, tabletop experiments with strongly-interacting atomic Fermi gases can provide measurements that are relevant to all strongly-interacting Fermi systems, thus impacting theories in intellectual disciplines outside atomic physics, including materials science and condensed matter physics (superconductivity), nuclear physics (nuclear matter), high-energy physics (effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark-gluon plasmas (elliptic flow), and most recently, string-theory (minimum viscosity hydrodynamics). Recent experiments have been carried out in a three dimensional geometry, where the adiabatic local density approximation is valid. The purpose of this program is to explore strongly-interacting Fermi gases in a two-dimensional pancake geometry, where the simplest approximations break down.

Book Correlations in Low Dimensional Quantum Gases

Download or read book Correlations in Low Dimensional Quantum Gases written by Guillaume Lang and published by Springer. This book was released on 2018-12-29 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.

Book Strongly Interacting Fermi Gases

Download or read book Strongly Interacting Fermi Gases written by Ariel Tjodolv Sommer and published by . This book was released on 2013 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experiments using ultracold atomic gases address fundamental problems in many-body physics. This thesis describes experiments on strongly-interacting gases of fermionic atoms, with a focus on non-equilibrium physics and dimensionality. One of the fundamental dissipative processes in two-component gases is the transport of spin due to relative motion between the two spin components. We generate spin transport in strongly-interacting Fermi gases using a spin dipole excitation and measure the transport coefficients describing spin drag and spin diffusion. For resonant interactions, we observe strong suppression of spin transport, with the spin transport coefficients reaching quantum-mechanical limits. Dimensionality plays an important role in the formation of bound states between pairs of particles. We tune the dimensionality of a Fermi gas from three to two dimensions (2D) using an optical lattice potential and observe the evolution of the pair binding energy using radio-frequency spectroscopy. The binding energy increases as the lattice depth increases, approaching the 2D limit. Gases with resonant interactions, which have no two-body bound state in three dimensions, show a large binding energy determined by the confinement energy of the lattice wells. The themes of non-equilibrium dynamics and dimensionality come together in the study of soliton excitations in superfluid Fermi gases. We create a planar defect in the superfluid order parameter of an elongated Fermi gas using detuned laser light. This defect moves through the gas as a solitary wave, or soliton, without dispersing. We measure the oscillation period of the soliton and find it to exceed the predictions of mean-field theory by an order of magnitude.

Book Quantum Matter at Ultralow Temperatures

Download or read book Quantum Matter at Ultralow Temperatures written by M. Inguscio and published by IOS Press. This book was released on 2016-09-27 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Enrico Fermi summer school on Quantum Matter at Ultralow Temperatures held on 7-15 July 2014 at Varenna, Italy, featured important frontiers in the field of ultracold atoms. For the last 25 years, this field has undergone dramatic developments, which were chronicled by several Varenna summer schools, in 1991 on Laser Manipulation of Atoms, in 1998 on Bose-Einstein Condensation in Atomic Gases, and in 2006 on Ultra-cold Fermi Gases. The theme of the 2014 school demonstrates that the field has now branched out into many different directions, where the tools and precision of atomic physics are used to realise new quantum systems, or in other words, to quantum-engineer interesting Hamiltonians. The topics of the school identify major new directions: Quantum gases with long range interactions, either due to strong magnetic dipole forces, due to Rydberg excitations, or, for polar molecules, due to electric dipole interactions; quantum gases in lower dimensions; quantum gases with disorder; atoms in optical lattices, now with single-site optical resolution; systems with non-trivial topological properties, e.g. with spin-orbit coupling or in artificial gauge fields; quantum impurity problems (Bose and Fermi polarons); quantum magnetism. Fermi gases with strong interactions, spinor Bose-Einstein condensates and coupled multi-component Bose gases or Bose-Fermi mixtures continue to be active areas. The current status of several of these areas is systematically summarized in this volume.

Book Strongly Correlated Fermions and Bosons in Low Dimensional Disordered Systems

Download or read book Strongly Correlated Fermions and Bosons in Low Dimensional Disordered Systems written by Igor V. Lerner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.

Book Ultracold Quantum Matter In Lower Dimensions

Download or read book Ultracold Quantum Matter In Lower Dimensions written by Stefan Klaus Baur and published by . This book was released on 2011 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid progress in the field of ultracold atoms allows the study of many new and old models of quantum many-body physics. In this doctoral dissertation we theoretically explore exotic phases of ultracold quantum gases, with a special focus spin-imbalanced attractive Fermi gases in lower dimensional situations. Chapter 2 reviews the mean-field theory approach to pairing in twocomponent Fermi gases. Applications of this theory are illustrated in Chapter 3, where we discuss mostly well-known results of mean-field theory applied to imbalanced Fermi gases. Adapted from the author's prior publications, Chapters 4, 5 use the theory developed in Chapters 2, 3. In Chapter 6 we discuss the physics of Fermi gases, squeezed into one spatial dimension. In this and Chapter 7, we go beyond mean-field theory, approaching the problem through the Bethe ansatz, exact solutions to few-body problems and Fermi-Bose mappings ("fermionization"). We also show results from a joint effort with the experimental group of Randy Hulet at Rice University to experimentally realize and probe a strongly interacting one dimensional paired Fermi gas. In Chapter 8, after a brief introduction to rapidly rotating two dimensional Bose gases, we introduce a new protocol to create few atom fractional quantum Hall states. Finally, in Chapter 9 we study the effects of two-body losses on lattice Bose gases with hardcore interactions in one and two spatial dimensions.

Book A Strongly Interacting Two dimensional Fermi Gas

Download or read book A Strongly Interacting Two dimensional Fermi Gas written by Bernd Fröhlich and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diffusion Monte Carlo Study of Strongly Interacting Two dimensional Fermi Gases

Download or read book Diffusion Monte Carlo Study of Strongly Interacting Two dimensional Fermi Gases written by Alexander Galea and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo (DMC) calculations. In order to motivate our work, we first present an overview of 20th century breakthroughs relating to the discovery and understanding of quantum degeneracy and then we review the recent experimental advancements in cold atomic physics. The final topic in our introduction is a superfluid phase of nuclear matter, expected to exist in neutron stars, that can be compared to a Fermi gas of cold atoms. Following this, we describe our methods piece by piece. First we focus on the two-body problem, showing the partial wave expansion and its relation to scattering parameters for both 2D and 3D. After presenting the basics, we discuss our numerical methods for determining the scattering parameters. Solving for these allow us to define the interaction regime and guarantee diluteness of the many-body system. We build up to this many-body problem by first studying the non-interacting system with emphasis on finite size effects. The many-body wave functions we use for our QMC calculations are then introduced. These contain variational parameters and are encoded with some knowledge of the interactions. Having discussed the problem and our methods, our numerical multi-dimensional integration techniques are explained. We use variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) to calculate ground state properties of the gas over a range of interaction strengths. We determine the energy per particle, Tan's contact parameter, the chemical potential, and the pairing gap, all following from variationally optimized many-body wave functions.

Book Strong Interactions in Low Dimensions

Download or read book Strong Interactions in Low Dimensions written by D. Baeriswyl and published by Springer Science & Business Media. This book was released on 2007-09-29 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an attempt to convey the colorful facets of condensed matter systems with reduced dimensionality. Some of the specific features predicted for interacting one-dimensional electron systems, such as charge- and spin-density waves, have been observed in many quasi-one-dimensional materials. The two-dimensional world is even richer: besides d-wave superconductivity and the Quantum Hall Effect - perhaps the most spectacular phases explored during the last two decades - many collective charge and spin states have captured the interest of researchers, such as charge stripes or spontaneously generated circulating currents. Recent years have witnessed important progress in material preparation, measurement techniques and theoretical methods. Today larger and better samples, higher flux for neutron beams, advanced light sources, better resolution in electron spectroscopy, new computational algorithms, and the development of field-theoretical approaches allow an in-depth analysis of the complex many-body behaviour of low-dimensional materials. The epoch when simple mean-field arguments were sufficient for describing the gross features observed experimentally is definitely over. The Editors' aim is to thoroughly explain a number of selected topics: the application of dynamical probes, such as neutron scattering, optical absorption and photoemission, as well as transport studies, both electrical and thermal. Some of the more theoretical chapters are directly relevant for experiments, such as optical spectroscopy, transport in one-dimensional models, and the phenomenology of charge inhomogeneities in layered materials, while others discuss more general topics and methods, for example the concept of a Luttinger liquid and bosonization, or duality transformations, both promising tools for treating strongly interacting many-body systems.

Book Strongly Correlated Fermi Gases in Two and Three Dimensions

Download or read book Strongly Correlated Fermi Gases in Two and Three Dimensions written by Jonas Faltinath and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultra cold Fermi Gases

    Book Details:
  • Author : M. Inguscio
  • Publisher : IOS Press
  • Release : 2008-04-18
  • ISBN : 1607503182
  • Pages : 933 pages

Download or read book Ultra cold Fermi Gases written by M. Inguscio and published by IOS Press. This book was released on 2008-04-18 with total page 933 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of cold atomic gases faced a revolution in 1995 when Bose-Einstein condensation was achieved. Since then, there has been an impressive progress, both experimental and theoretical. The quest for ultra-cold Fermi gases started shortly after the 1995 discovery, and quantum degeneracy in a gas of fermionic atoms was obtained in 1999. The Pauli exclusion principle plays a crucial role in many aspects of ultra-cold Fermi gases, including inhibited interactions with applications to precision measurements, and strong correlations. The path towards strong interactions and pairing of fermions opened up with the discovery in 2003 that molecules formed by fermions near a Feshbach resonance were surprisingly stable against inelastic decay, but featured strong elastic interactions. This remarkable combination was explained by the Pauli exclusion principle and the fact that only inelastic collisions require three fermions to come close to each other. The unexpected stability of strongly interacting fermions and fermion pairs triggered most of the research which was presented at this summer school. It is remarkable foresight (or good luck) that the first steps to organize this summer school were already taken before this discovery. It speaks for the dynamics of the field how dramatically it can change course when new insight is obtained. The contributions in this volume provide a detailed coverage of the experimental techniques for the creation and study of Fermi quantum gases, as well as the theoretical foundation for understanding the properties of these novel systems.

Book Diffusion Monte Carlo Study of Strongly Interacting Two dimensional Fermi Gases

Download or read book Diffusion Monte Carlo Study of Strongly Interacting Two dimensional Fermi Gases written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T=0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to produce an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Lastly, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.

Book Strongly interacting Fermi Gases with Population Imbalance

Download or read book Strongly interacting Fermi Gases with Population Imbalance written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a theoretical study of strongly-interacting Fermi systems with population imbalance, which is motivated by some differences in cold atoms experiments. We calculate the energy of a single fermion interacting resonantly with a Fermi sea of different species fermions in anisotropic traps, and show that finite particle numbers and the trap geometry impact the phase structure and the critical polarization, the limit of resonance superfluidity in traps. Our findings contribute to understanding some experimental discrepancies as finite-size and confinement effects. For an imbalanced gas in the uniform system, we calculate the energy of adding an impurity, and construct the equation of state of the partially-polarized normal Fermi liquid. Finally, we study the properties of a spin-down polaron in a trapped gas containing arbitrary numbers of spin-up and spin-down fermions, and derive a self-consistent equation for the polaron energy.

Book Many  and Few body Physics in Low dimensional Resonantly interacting Fermi Quantum Gases

Download or read book Many and Few body Physics in Low dimensional Resonantly interacting Fermi Quantum Gases written by D. V. Kurlov and published by . This book was released on 2020 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Exact Methods in Low dimensional Statistical Physics and Quantum Computing

Download or read book Exact Methods in Low dimensional Statistical Physics and Quantum Computing written by Stephane Ouvry and published by Oxford University Press. This book was released on 2010-04-22 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional statistical models are instrumental in improving our understanding of emerging fields, such as quantum computing and cryptography, complex systems, and quantum fluids. This book of lectures by international leaders in the field sets these issues into a larger and more coherent theoretical perspective than is currently available.

Book Ultracold Bosonic and Fermionic Gases

Download or read book Ultracold Bosonic and Fermionic Gases written by Kathryn Levin and published by Elsevier. This book was released on 2012-07-30 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations

Book Probing Non Equilibrium Dynamics in Two Dimensional Quantum Gases

Download or read book Probing Non Equilibrium Dynamics in Two Dimensional Quantum Gases written by Cheng-An Chen and published by Springer Nature. This book was released on 2022-10-11 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores the physics of non-equilibrium quantum dynamics in homogeneous two-dimensional (2D) quantum gases. Ultracold quantum gases driven out of equilibrium have been prominent platforms for studying quantum many-body physics. However, probing non-equilibrium dynamics in conventionally trapped, inhomogeneous atomic quantum gases has been a challenging task because coexisting mass transport and spreading of quantum correlations often complicate experimental analyses. In this work, the author solves this technical hurdle by producing ultracold cesium atoms in a quasi-2D optical box potential. The exquisite optical trap allows one to remove density inhomogeneity in a degenerate quantum gas and control its dimensionality. The author also details the development of a high-resolution, in situ imaging technique to monitor the evolution of collective excitations and quantum transport down to atomic shot-noise, and at the length scale of elementary collective excitations. Meanwhile, tunable Feshbach resonances in ultracold cesium atoms permit precise and dynamical control of interactions with high temporal and even spatial resolutions. By employing these state-of-the-art techniques, the author performed interaction quenches to control the generation and evolution of quasiparticles in quantum gases, presenting the first direct measurement of quantum entanglement between interaction quench generated quasiparticle pairs in an atomic superfluid. Quenching to attractive interactions, this work shows stimulated emission of quasiparticles, leading to amplified density waves and fragmentation, forming 2D matter-wave Townes solitons that were previously considered impossible to form in equilibrium due to their instability. This thesis unveils a set of scale-invariant and universal quench dynamics and provides unprecedented tools to explore quantum entanglement transport in a homogenous quantum gas.