Download or read book Electronic Structure of Strongly Correlated Materials written by Vladimir Anisimov and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
Download or read book Dynamical Mean Field Theory for Strongly Correlated Materials written by Volodymyr Turkowski and published by Springer Nature. This book was released on 2021-04-22 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.
Download or read book Theoretical Methods for Strongly Correlated Electrons written by David Sénéchal and published by Springer Science & Business Media. This book was released on 2006-05-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.
Download or read book Strongly Correlated Electrons in Two Dimensions written by Sergey Kravchenko and published by CRC Press. This book was released on 2017-05-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.
Download or read book Out of Equilibrium Physics of Correlated Electron Systems written by Roberta Citro and published by Springer. This book was released on 2018-07-26 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.
Download or read book Lecture Notes on Electron Correlation and Magnetism written by Patrik Fazekas and published by World Scientific. This book was released on 1999 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readership: Graduate students and researchers in condensed matter physics.
Download or read book Correlated Electrons from Models to Materials written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2012 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Strong Correlation and Superconductivity written by Hidetoshi Fukuyama and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the ffiM Japan International Sympo sium on Strong Correlation and Superconductivity, which was held in Keidan ren Guest House at the foot of Mt. Fuji, May 21-25, 1989. The purpose of the Symposium was to provide an opportunity for discus sions on the problem of strong correlation of electrons in the context of high-Tc superconductivity. Sixty-eight scientists were invited from seven countries and forty-three papers were presented in the Symposium. Soon after the discovery ofhigh-Tc superconducting oxides, Professor P. W. Anderson proposed that the essence of high-Tc superconductivity lies in the strong correlation among the electrons in these materials. This proposal has stimulated a wide range of theoretical investigations on this profound and dif ficult problem, which are expected to lead eventually to new concepts describ ing strong electron correlation. In the Symposium, Anderson himself started lively discussions by his talk entitled "Myth and Reality in High-Tc Supercon ductivity", which was followed by various reports on theoretical studies and experimental results. Concise and thoughtful summaries of experiment and theory were given by Professors H. R. Ott and P. A. Lee, respectively. It is our hope that this volume reflects the present status of the research activity on this outstanding problem from the viewpoint of the basic physics and that it will further stimulate the effort to understand these fascinating systems, the high-Tc oxides.
Download or read book Finite Size Effects in Correlated Electron Models written by Andrei A. Zvyagin and published by World Scientific. This book was released on 2005 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents exact results for one-dimensional models (including quantum spin models) of strongly correlated electrons in a comprehensive and concise manner. It incorporates important results related to magnetic and hybridization impurities in electron hosts and contains exact original results for disordered ensembles of impurities in interacting systems. These models describe a number of real low-dimensional electron systems that are widely used in nanophysics and microelectronics.An important method of modern theoretical and mathematical physics — the Bethe's Ansatz (BA) — is introduced to readers. This book presents different forms of the BA for periodic and open quantum chains. Other forms dealt with are the co-ordinate BA, thermodynamic BA, nested BA, algebraic BA, and thermal BA. The book also contains a compact description of other theoretical methods such as scaling, conformal field theory, Abelian and non-Abelian bosonizations.The book is suitable for use as a textbook by graduate students in non-perturbative methods of low-dimensional quantum many-body theory. It will also be a useful source of reference for qualified physicists, as well as non-experts in low-dimensional physics, as it explores material necessary for further studies in the fields of exactly solvable quantum models and low-dimensional correlated electron systems.
Download or read book Electronic Transport Theories written by Navinder Singh and published by CRC Press. This book was released on 2016-11-17 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintaining a practical perspective, Electronic Transport Theories: From Weakly to Strongly Correlated Materials provides an integrative overview and comprehensive coverage of electronic transport with pedagogy in view. It covers traditional theories, such as the Boltzmann transport equation and the Kubo formula, along with recent theories of transport in strongly correlated materials. The understood case of electronic transport in metals is treated first, and then transport issues in strange metals are reviewed. Topics discussed are: the Drude-Lorentz theory; the traditional Bloch-Boltzmann theory and the Grüneisen formula; the Nyquist theorem and its formulation by Callen and Welton; the Kubo formalism; the Langevin equation approach; the Wölfle-Götze memory function formalism; the Kohn-Luttinger theory of transport; and some recent theories dealing with strange metals. This book is an invaluable resource for undergraduate students, post-graduate students, and researchers with a background in quantum mechanics, statistical mechanics, and mathematical methods.
Download or read book Introduction to the Electron Theory of Metals written by Uichiro Mizutani and published by Cambridge University Press. This book was released on 2001-06-14 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.
Download or read book Interacting Electrons and Quantum Magnetism written by Assa Auerbach and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.
Download or read book Introduction to Many Body Physics written by Piers Coleman and published by Cambridge University Press. This book was released on 2015-11-26 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Download or read book Electron Correlations and Materials Properties written by A. Gonis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, the proceedings of a 1998 international workshop, provides experimental evidence of the effects of correlation on the physical, chemical, and mechanical properties of materials, as well as the theoretical/computational methodology that has been developed for their study.
Download or read book Introduction to Unconventional Superconductivity written by V.P. Mineev and published by CRC Press. This book was released on 1999-09-21 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional superconductivity (or superconductivity with a nontrivial Cooper pairing) is believed to exist in many heavy-fermion materials as well as in high temperature superconductors, and is a subject of great theoretical and experimental interest. The remarkable progress achieved in this field has not been reflected in published monographs and textbooks, and there is a gap between current research and the standard education of solid state physicists in the theory of superconductivity. This book is intended to meet this information need and includes the authors' original results.