EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Strict Convexity and Complex Strict Convexity

Download or read book Strict Convexity and Complex Strict Convexity written by Istratescu and published by Routledge. This book was released on 2017-10-19 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important work provides a comprehensive overview of the properties of Banachspaces related to strict convexity and a survey of significant applications-uniting a wealthof information previously scattered throughout the mathematical literature in a well-organized,accessible format.After introducing the subject through a discussion of the basic results of linear functionalanalysis, this unique book proceeds to investigate the characteristics of strictly convexspaces and related classes, including uniformly convex spaces, and examine important applicationsregarding approximation theory and fixed point theory. Following this extensivetreatment, the book discusses complex strictly convex spaces and related spaces- alsowith applications. Complete, clearly elucidated proofs accompany results throughout thebook, and ample references are provided to aid further research of the subject.Strict Convexity and Complex Strict Convexity is essential fot mathematicians and studentsinterested in geometric theory of Banach spaces and applications to approximationtheory and fixed point theory, and is of great value to engineers working in optimizationstudies. In addition, this volume serves as an excellent text for a graduate course inGeometric Theory of Banach Spaces.

Book Convexity from the Geometric Point of View

Download or read book Convexity from the Geometric Point of View written by Vitor Balestro and published by Springer Nature. This book was released on with total page 1195 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transactions of the American Mathematical Society

Download or read book Transactions of the American Mathematical Society written by and published by . This book was released on 1996 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lecture Notes in Pure and Applied Mathematics

Download or read book Lecture Notes in Pure and Applied Mathematics written by and published by . This book was released on 1993 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Function Spaces

    Book Details:
  • Author : Julian Musielak
  • Publisher : B. G. Teubner Gmbh
  • Release : 1988
  • ISBN :
  • Pages : 200 pages

Download or read book Function Spaces written by Julian Musielak and published by B. G. Teubner Gmbh. This book was released on 1988 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reviews in Functional Analysis  1980 86

Download or read book Reviews in Functional Analysis 1980 86 written by and published by . This book was released on 1989 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Annales Societatis Mathematicae Polonae

Download or read book Annales Societatis Mathematicae Polonae written by and published by . This book was released on 1988 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Far East Journal of Mathematical Sciences

Download or read book Far East Journal of Mathematical Sciences written by and published by . This book was released on 2006 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Polynomial Convexity

    Book Details:
  • Author : Edgar Lee Stout
  • Publisher : Springer Science & Business Media
  • Release : 2007-05-03
  • ISBN : 0817645373
  • Pages : 454 pages

Download or read book Polynomial Convexity written by Edgar Lee Stout and published by Springer Science & Business Media. This book was released on 2007-05-03 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive monograph details polynomially convex sets. It presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. Coverage examines in considerable detail questions of uniform approximation for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. The book also discusses important applications and motivates the reader with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1996
  • ISBN :
  • Pages : 534 pages

Download or read book written by and published by . This book was released on 1996 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Current Engineering Practice

Download or read book Current Engineering Practice written by and published by . This book was released on 1985 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Libertas Mathematica

Download or read book Libertas Mathematica written by and published by . This book was released on 1984 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Journal of Southeast University

Download or read book Journal of Southeast University written by and published by . This book was released on 1989 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Convex Optimization   Euclidean Distance Geometry

Download or read book Convex Optimization Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.