Download or read book Complex Systems in Finance and Econometrics written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Download or read book Stochastic Volatility written by Neil Shephard and published by Oxford University Press, USA. This book was released on 2005 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.
Download or read book Handbook of Volatility Models and Their Applications written by Luc Bauwens and published by John Wiley & Sons. This book was released on 2012-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Download or read book Statistical Modeling and Computation written by Dirk P. Kroese and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.
Download or read book Handbook of Economic Forecasting written by G. Elliott and published by Elsevier. This book was released on 2006-07-14 with total page 1071 pages. Available in PDF, EPUB and Kindle. Book excerpt: Section headings in this handbook include: 'Forecasting Methodology; 'Forecasting Models'; 'Forecasting with Different Data Structures'; and 'Applications of Forecasting Methods.'.
Download or read book Bayesian Econometric Methods written by Joshua Chan and published by Cambridge University Press. This book was released on 2019-08-15 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Download or read book Nonparametric and Semiparametric Methods in Econometrics and Statistics written by William A. Barnett and published by Cambridge University Press. This book was released on 1991-06-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.
Download or read book Bayesian Inference in the Social Sciences written by Ivan Jeliazkov and published by John Wiley & Sons. This book was released on 2014-11-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book’s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.
Download or read book Stochastic volatility and the pricing of financial derivatives written by Antoine Petrus Cornelius van der Ploeg and published by Rozenberg Publishers. This book was released on 2006 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Structural Analysis of Discrete Data with Econometric Applications written by Charles F. Manski and published by MIT Press (MA). This book was released on 1981 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thirteen papers in "Structural Analysis of Discrete Data" are previously unpublished major research contributions solicited by the editors. They have been specifically prepared to fulfill the two-fold purpose of the volume, first to provide the econometrics student with an overview of the present extent of the subject and to delineate the boundaries of current research, both in terms of methodology and applications. "Coordinated publication of important findings" should, as the editors state, "lower the cost of entry into the field and speed dissemination of recent research into the graduate econometrics classroom."A second purpose of the volume is to communicate results largely reported in the econometrics literature to a wider community of researchers to whom they are directly relevant, including applied econometricians, statisticians in the area of discrete multivariate analysis, specialists in biometrics, psychometrics, and sociometrics, and analysts in various applied fields such as finance, marketing, and transportation.The papers are grouped into four sections: "Statistical Analysis of Discrete Probability Models, " with papers by the editors and by Steven Cosslett; "Dynamic Discrete Probability Models, " consisting of two contributions by James Heckman; "Structural Discrete Probability Models Derived from Theories of Choice, " with papers by Daniel McFadden, Gregory Fischer and Daniel Nagin, Steven Lerman and Charles Manski, and Moshe Ben-Akiva and Thawat Watanatada; and "Simultaneous Systems Models with Discrete Endogenous Variables, " with contributions by Lung-Fei Lee, Jerry Hausman and David Wise, Dale Poirier, Peter Schmidt, and Robert Avery.Among the applications treated are income maintenance experiments, physician behavior, consumer credit, and intra-urban location and transportation.
Download or read book Forecasting Volatility in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2002-08-22 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Forecasting Volatility in the Financial Markets' assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting edge modelling and forecasting techniques. It then uses a technical survey to explain the different ways to measure risk and define the different models of volatility and return.The editors have brought together a set of contributors that give the reader a firm grounding in relevant theory and research and an insight into the cutting edge techniques applied in this field of the financial markets.This book is of particular relevance to anyone who wants to understand dynamic areas of the financial markets.* Traders will profit by learning to arbitrage opportunities and modify their strategies to account for volatility.* Investment managers will be able to enhance their asset allocation strategies with an improved understanding of likely risks and returns.* Risk managers will understand how to improve their measurement systems and forecasts, enhancing their risk management models and controls.* Derivative specialists will gain an in-depth understanding of volatility that they can use to improve their pricing models.* Students and academics will find the collection of papers an invaluable overview of this field.This book is of particular relevance to those wanting to understand the dynamic areas of volatility modeling and forecasting of the financial marketsProvides the latest research and techniques for Traders, Investment Managers, Risk Managers and Derivative Specialists wishing to manage their downside risk exposure Current research on the key forecasting methods to use in risk management, including two new chapters
Download or read book The Econometric Modelling of Financial Time Series written by Terence C. Mills and published by Cambridge University Press. This book was released on 2008-03-20 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Terence Mills' best-selling graduate textbook provides detailed coverage of research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling. This third edition, co-authored with Raphael Markellos, contains a wealth of material reflecting the developments of the last decade. Particular attention is paid to the wide range of nonlinear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on nonlinearity and its testing.
Download or read book Stochastic Volatility and Realized Stochastic Volatility Models written by Makoto Takahashi and published by Springer Nature. This book was released on 2023-04-18 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall. The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index. This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.
Download or read book Theory and Applications of Time Series Analysis written by Olga Valenzuela and published by Springer Nature. This book was released on 2020-11-20 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.
Download or read book Financial Econometrics written by Christian Gourieroux and published by Princeton University Press. This book was released on 2022-12-13 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial econometrics is a great success story in economics. Econometrics uses data and statistical inference methods, together with structural and descriptive modeling, to address rigorous economic problems. Its development within the world of finance is quite recent and has been paralleled by a fast expansion of financial markets and an increasing variety and complexity of financial products. This has fueled the demand for people with advanced econometrics skills. For professionals and advanced graduate students pursuing greater expertise in econometric modeling, this is a superb guide to the field's frontier. With the goal of providing information that is absolutely up-to-date—essential in today's rapidly evolving financial environment—Gourieroux and Jasiak focus on methods related to foregoing research and those modeling techniques that seem relevant to future advances. They present a balanced synthesis of financial theory and statistical methodology. Recognizing that any model is necessarily a simplified image of reality and that econometric methods must be adapted and applied on a case-by-case basis, the authors employ a wide variety of data sampled at frequencies ranging from intraday to monthly. These data comprise time series representing both the European and North American markets for stocks, bonds, and foreign currencies. Practitioners are encouraged to keep a critical eye and are armed with graphical diagnostics to eradicate misspecification errors. This authoritative, state-of-the-art reference text is ideal for upper-level graduate students, researchers, and professionals seeking to update their skills and gain greater facility in using econometric models. All will benefit from the emphasis on practical aspects of financial modeling and statistical inference. Doctoral candidates will appreciate the inclusion of detailed mathematical derivations of the deeper results as well as the more advanced problems concerning high-frequency data and risk control. By establishing a link between practical questions and the answers provided by financial and statistical theory, the book also addresses the needs of applied researchers employed by financial institutions.
Download or read book S Co 2009 Sixth Conference Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction written by and published by Maggioli Editore. This book was released on 2009 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.