EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Transport Processes in Discrete Biological Systems

Download or read book Stochastic Transport Processes in Discrete Biological Systems written by Eckart Frehland and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio logical 'transport systems can be complex. For example, the transport process can be coupled to other processes such as chemical reactions and take place in discontinuous structures of molecular dimensions. Furthermore, since there are strong electric fields or high concentration gradients across biological membranes ion transport processes of biological relevance are mostly processes far from equilibrium. For these reasons the development of new theoretical concepts has been necessary. The concept of transport in discrete systems has turned out to be more appropriate than continuum models.

Book Principles and Models of Biological Transport

Download or read book Principles and Models of Biological Transport written by Morton H. Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for a first course in biological mass transport, and the material in it is presented at a level that is appropriate to advanced undergraduates or early graduate level students. Its orientation is somewhat more physical and mathematical than a biology or standard physiology text, reflecting its origins in a transport course that I teach to undergraduate (and occasional graduate) biomedical engineering students in the Whiting School of Engineering at Johns Hopkins. The audience for my cours- and presumably for this text - also includes chemical engineering undergraduates concentrating in biotechnology, and graduate students in biophysics. The organization of this book differs from most texts that at tempt to present an engineering approach to biological transport. What distinguishes biological transport from other mass transfer processes is the fact that biological transport is biological. Thus, we do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological ap plications of these principles; rather, we begin with the biological processes themselves, and then develop the tools that are needed to describe them. As a result, more physiology is presented in this text than is often found in books dealing with engineering applica tions in the life sciences.

Book Stochastic Models in Biology

Download or read book Stochastic Models in Biology written by Narendra S. Goel and published by Elsevier. This book was released on 2013-10-22 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Models in Biology describes the usefulness of the theory of stochastic process in studying biological phenomena. The book describes analysis of biological systems and experiments though probabilistic models rather than deterministic methods. The text reviews the mathematical analyses for modeling different biological systems such as the random processes continuous in time and discrete in state space. The book also discusses population growth and extinction through Malthus' law and the work of MacArthur and Wilson. The text then explains the dynamics of a population of interacting species. The book also addresses population genetics under systematic evolutionary pressures known as deterministic equations and genetic changes in a finite population known as stochastic equations. The text then turns to stochastic modeling of biological systems at the molecular level, particularly the kinetics of biochemical reactions. The book also presents various useful equations such as the differential equation for generating functions for birth and death processes. The text can prove valuable for biochemists, cellular biologists, and researchers in the medical and chemical field who are tasked to perform data analysis.

Book Stochastic Processes  Multiscale Modeling  and Numerical Methods for Computational Cellular Biology

Download or read book Stochastic Processes Multiscale Modeling and Numerical Methods for Computational Cellular Biology written by David Holcman and published by Springer. This book was released on 2018-08-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.

Book Discrete Stochastic Processes

Download or read book Discrete Stochastic Processes written by Robert G. Gallager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

Book Stochastic processes and applications in biology and medicine II

Download or read book Stochastic processes and applications in biology and medicine II written by Marius Iosifescu and published by Springer. This book was released on 1973-07-25 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a revised and enlarged version of Chapter 3 of. a book with the same title, published in Romanian in 1968. The revision resulted in a new book which has been divided into two of the large amount of new material. The whole book parts because is intended to introduce mathematicians and biologists with a strong mathematical background to the study of stochastic processes and their applications in biological sciences. It is meant to serve both as a textbook and a survey of recent developments. Biology studies complex situations and therefore needs skilful methods of abstraction. Stochastic models, being both vigorous in their specification and flexible in their manipulation, are the most suitable tools for studying such situations. This circumstance deter mined the writing of this volume which represents a comprehensive cross section of modern biological problems on the theory of stochastic processes. Because of the way some specific problems have been treat ed, this volume may also be useful to research scientists in any other field of science, interested in the possibilities and results of stochastic modelling. To understand the material presented, the reader needs to be acquainted with probability theory, as given in a sound introductory course, and be capable of abstraction.

Book Stochastic Optimal Transportation

Download or read book Stochastic Optimal Transportation written by Toshio Mikami and published by Springer Nature. This book was released on 2021-06-15 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the optimal transportation problem (OT) is described as a variational problem for absolutely continuous stochastic processes with fixed initial and terminal distributions. Also described is Schrödinger’s problem, which is originally a variational problem for one-step random walks with fixed initial and terminal distributions. The stochastic optimal transportation problem (SOT) is then introduced as a generalization of the OT, i.e., as a variational problem for semimartingales with fixed initial and terminal distributions. An interpretation of the SOT is also stated as a generalization of Schrödinger’s problem. After the brief introduction above, the fundamental results on the SOT are described: duality theorem, a sufficient condition for the problem to be finite, forward–backward stochastic differential equations (SDE) for the minimizer, and so on. The recent development of the superposition principle plays a crucial role in the SOT. A systematic method is introduced to consider two problems: one with fixed initial and terminal distributions and one with fixed marginal distributions for all times. By the zero-noise limit of the SOT, the probabilistic proofs to Monge’s problem with a quadratic cost and the duality theorem for the OT are described. Also described are the Lipschitz continuity and the semiconcavity of Schrödinger’s problem in marginal distributions and random variables with given marginals, respectively. As well, there is an explanation of the regularity result for the solution to Schrödinger’s functional equation when the space of Borel probability measures is endowed with a strong or a weak topology, and it is shown that Schrödinger’s problem can be considered a class of mean field games. The construction of stochastic processes with given marginals, called the marginal problem for stochastic processes, is discussed as an application of the SOT and the OT.

Book Evolution of Biological Systems in Random Media  Limit Theorems and Stability

Download or read book Evolution of Biological Systems in Random Media Limit Theorems and Stability written by Anatoly Swishchuk and published by Springer. This book was released on 2010-12-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new book in biomathematics, which includes new models of stochastic non-linear biological systems and new results for these systems. These results are based on the new results for non-linear difference and differential equations in random media. This book contains: -New stochastic non-linear models of biological systems, such as biological systems in random media: epidemic, genetic selection, demography, branching, logistic growth and predator-prey models; -New results for scalar and vector difference equations in random media with applications to the stochastic biological systems in 1); -New results for stochastic non-linear biological systems, such as averaging, merging, diffusion approximation, normal deviations and stability; -New approach to the study of stochastic biological systems in random media such as random evolution approach.

Book Transport Phenomena in Biological Systems

Download or read book Transport Phenomena in Biological Systems written by George A. Truskey and published by . This book was released on 2010 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides students with the skills necessary to develop and critically analyse models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Book Stochastic Chemical Reaction Systems in Biology

Download or read book Stochastic Chemical Reaction Systems in Biology written by Hong Qian and published by Springer Nature. This book was released on 2021-10-18 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the analysis of stochastic dynamic models in biology and medicine. The main aim is to offer a coherent set of probabilistic techniques and mathematical tools which can be used for the simulation and analysis of various biological phenomena. These tools are illustrated on a number of examples. For each example, the biological background is described, and mathematical models are developed following a unified set of principles. These models are then analyzed and, finally, the biological implications of the mathematical results are interpreted. The biological topics covered include gene expression, biochemistry, cellular regulation, and cancer biology. The book will be accessible to graduate students who have a strong background in differential equations, the theory of nonlinear dynamical systems, Markovian stochastic processes, and both discrete and continuous state spaces, and who are familiar with the basic concepts of probability theory.

Book Stochastic Processes in Cell Biology

Download or read book Stochastic Processes in Cell Biology written by Paul C. Bressloff and published by Springer Nature. This book was released on 2022-01-04 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.

Book Stochastic Spatial Processes

Download or read book Stochastic Spatial Processes written by Petre Tautu and published by Springer. This book was released on 2006-11-14 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a Conference held in Heidelberg, September 10 - 14, 1984

Book Stochastic Dynamics for Systems Biology

Download or read book Stochastic Dynamics for Systems Biology written by Christian Mazza and published by CRC Press. This book was released on 2016-04-19 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing

Book Stochastic Processes in Cell Biology

Download or read book Stochastic Processes in Cell Biology written by Paul C. Bressloff and published by Springer Nature. This book was released on 2022-01-10 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.

Book The Elements of Stochastic Processes with Applications to the Natural Sciences

Download or read book The Elements of Stochastic Processes with Applications to the Natural Sciences written by Norman T. J. Bailey and published by John Wiley & Sons. This book was released on 1964 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recurrent events; Random walk models; Markov chains; Discrete branching processes; Markov processes in continuous time; Homogeneous birth and death processes; Some non-homogeneous processes; Multi-dimensional processes; Queueing processes; Epidemic processes; Competition and predation; Diffusion processes; Approximations to stochastic processes; Some non-markovian processes.

Book Discrete Event Control of Stochastic Networks  Multimodularity and Regularity

Download or read book Discrete Event Control of Stochastic Networks Multimodularity and Regularity written by Eitan Altman and published by Springer. This book was released on 2003-12-09 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opening new directions in research in both discrete event dynamic systems as well as in stochastic control, this volume focuses on a wide class of control and of optimization problems over sequences of integer numbers. This is a counterpart of convex optimization in the setting of discrete optimization. The theory developed is applied to the control of stochastic discrete-event dynamic systems. Some applications are admission, routing, service allocation and vacation control in queuing networks. Pure and applied mathematicians will enjoy reading the book since it brings together many disciplines in mathematics: combinatorics, stochastic processes, stochastic control and optimization, discrete event dynamic systems, algebra.

Book Stochastic Approaches for Systems Biology

Download or read book Stochastic Approaches for Systems Biology written by Mukhtar Ullah and published by Springer Science & Business Media. This book was released on 2011-07-12 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook focuses on stochastic analysis in systems biology containing both the theory and application. While the authors provide a review of probability and random variables, subsequent notions of biochemical reaction systems and the relevant concepts of probability theory are introduced side by side. This leads to an intuitive and easy-to-follow presentation of stochastic framework for modeling subcellular biochemical systems. In particular, the authors make an effort to show how the notion of propensity, the chemical master equation and the stochastic simulation algorithm arise as consequences of the Markov property. The text contains many illustrations, examples and exercises to illustrate the ideas and methods that are introduced. Matlab code is also provided where appropriate. Additionally, the cell cycle is introduced as a more complex case study. Senior undergraduate and graduate students in mathematics and physics as well as researchers working in the area of systems biology, bioinformatics and related areas will find this text useful.