Download or read book Image Processing written by and published by . This book was released on 2007 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Stochastic Geometry for Image Analysis written by Xavier Descombes and published by John Wiley & Sons. This book was released on 2013-05-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Download or read book Computer Vision Imaging and Computer Graphics Theory and Applications written by Sebastiano Battiato and published by Springer. This book was released on 2014-09-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference, VISIGRAPP 2013 consisting of the Joint Conferences on Computer Vision (VISAPP), the International Conference on Computer Graphics, GRAPP 2013, and the International Conference on Information Visualization IVAPP 2013, held in Barcelona, Spain, in February 2013. The 15 revised full papers presented were carefully reviewed and selected from 445 submissions. The papers are organized in topical sections on theory and applications in computer vision, image analysis, computer graphics, and information visualization.
Download or read book Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing written by Amit Kumar and published by Springer Nature. This book was released on 2023-10-28 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed articles from the 2nd International Conference on Cognitive & Intelligent Computing (ICCIC-2022), held at Vasavi College of Engineering Hyderabad, India. It covers the latest trends and developments in areas of cognitive computing, intelligent computing, machine learning, smart cities, IoT, artificial intelligence, cyber-physical systems, cybernetics, data science, neural network, and cognition. This book addresses the comprehensive nature of computational intelligence, cognitive computing, AI, ML, and DL to emphasize its character in modeling, identification, optimization, prediction, forecasting, and control of future intelligent systems. Submissions are original, unpublished, and present in-depth fundamental research contributions either from a methodological/application perspective in understanding artificial intelligence and machine learning approaches and their capabilities in solving diverse range of problems in industries and its real-world applications.
Download or read book MOTION ANALYSIS AND OBJECT TRACKING USING PYTHON AND TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2024-04-04 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first project in chapter one, gui_optical_flow_robust_local.py, showcases Dense Robust Local Optical Flow (RLOF) through a graphical user interface (GUI) built using the OpenCV library within a tkinter framework. The project's functionality and structure are comprehensively organized, starting with the importation of essential libraries such as tkinter for GUI, PIL for image processing, imageio for video file reading, and OpenCV (cv2) for optical flow computations. The VideoDenseRLOFOpticalFlow class encapsulates the application's core functionality, initializing the GUI window, managing user interactions, and processing video frames for optical flow calculation and visualization. The GUI creation involves setting up widgets to display videos and control buttons for functions like opening files, playback control, and frame navigation. Optical flow is calculated using the Farneback method, and the resulting flow is visually presented alongside the original video frame. Mouse interaction capabilities enable users to pan the video frame and zoom in using the mouse wheel. Additionally, frame navigation features facilitate moving forward or backward through the video sequence. Error handling mechanisms are in place to provide informative messages during video processing. Overall, this project offers a user-friendly interface for exploring dense optical flow in video sequences, with potential for further customization and extension in optical flow research and applications. The second project in chapter one implements a graphical user interface (GUI) application for analyzing optical flow in video files using the Kalman filter. The application is built using the Tkinter library for the GUI components and OpenCV for image processing tasks such as optical flow computation. Upon execution, the application opens a window titled "Optical Flow Analysis with Kalman Filter" and provides functionalities for loading and playing video files. Users can open a video file through the "Open Video" button, which prompts a file dialog for file selection. Once a video file is chosen, the application loads it and displays the first frame on a canvas. The GUI includes controls for adjusting parameters such as the zoom scale, step size for optical flow computation, and displacement (dx and dy) for visualizing flow vectors. Users can interactively navigate through the video frames using buttons like "Play/Pause," "Stop," "Previous Frame," and "Next Frame." Additionally, there's an option to jump to a specific time in the video. The core functionality of the application lies in the show_optical_flow method, where optical flow is calculated using the Farneback method from OpenCV. The calculated optical flow is then filtered using a Kalman filter to improve accuracy and smoothness. The Kalman filter predicts the position of flow vectors and corrects them based on the measured flow values, resulting in more stable and reliable optical flow visualization. Overall, this application provides a user-friendly interface for visualizing optical flow in video files while incorporating a Kalman filter to enhance the quality of the flow estimation. It serves as a practical tool for researchers and practitioners in computer vision and motion analysis fields. The third project in chapter one presents a GUI application for visualizing optical flow through Lucas-Kanade estimation on video data. Utilizing Tkinter for GUI elements and integrating OpenCV, NumPy, Pillow, and imageio for video processing and visualization, the application opens a window titled "Optical Flow Analysis with Lucas Kanade" upon execution. Users can interact with controls to load video files, manipulate playback, adjust visualization parameters, and navigate frames. The GUI comprises video display, control, and optical flow panels, with functionalities including video loading, playback control, frame display, Lucas-Kanade optical flow computation, and error handling for stability. The VideoLucasKanadeOpticalFlow class encapsulates the application logic, defining event handlers for user interactions and facilitating seamless video interaction until window closure. The fourth project in chapter one features a graphical user interface (GUI) for visualizing Gaussian pyramid optical flow on video files, employing Tkinter for GUI components and OpenCV for optical flow calculation. Upon execution, the application opens a window titled "Gaussian Pyramid Optical Flow," enabling users to interact with video files. Controls include options for opening videos, adjusting zoom scale, setting step size for optical flow computation, and navigating frames. The core functionality revolves around the show_optical_flow method, which computes Gaussian pyramid optical flow using the Farneback method from OpenCV. This method calculates optical flow vectors between consecutive frames, visualized via lines and circles on an empty mask image displayed alongside the original video frame, facilitating the observation of motion patterns within the video. The "Face Detection in Video Using Haar Cascade" project as first project in chapter two, is aimed at detecting faces in video streams through Haar Cascade, a machine learning-based approach for object detection. The application offers a Tkinter-based graphical user interface (GUI) featuring functionalities like opening video files, controlling playback, adjusting zoom levels, and navigating frames. Upon selecting a video file, OpenCV processes each frame using the Haar Cascade classifier to detect faces, which are then outlined with rectangles. Users can interactively play, pause, stop, and navigate through video frames, observing real-time face detection. This project serves as a simple yet effective tool for visualizing and analyzing face detection in videos, suitable for educational and practical purposes. The "Object Tracking with Lucas Kanade" project is the second project in chapter two aimed at tracking objects within video streams using the Lucas-Kanade optical flow algorithm. Built with Tkinter for the graphical user interface (GUI) and OpenCV for video processing, it offers comprehensive functionalities for efficient object tracking. The GUI setup includes buttons for opening video files, playback control, and bounding box selection around objects of interest on the video display canvas. Video loading supports various formats, and playback features enable seamless navigation through frames. The core functionality lies in object tracking using the Lucas-Kanade algorithm, where bounding box coordinates are continuously updated based on estimated motion. Real-time GUI updates display current frames, frame numbers, and tracked object bounding boxes, while error handling ensures smooth user interaction. Overall, this project provides a user-friendly interface for accurate and efficient object tracking in video streams, making it a valuable tool for various applications. The third project in chapter two offers real-time object tracking in video streams using the Lucas-Kanade algorithm with Gaussian Pyramid for robust optical flow estimation. Its Tkinter-based graphical user interface (GUI) enables users to interact with the video stream, visualize tracking processes, and control parameters effectively. Upon application launch, users access controls for video loading, zoom adjustment, playback control, frame navigation, and center coordinate display clearance. The core track_object method tracks specified objects within video frames using Lucas-Kanade optical flow with Gaussian Pyramid, continuously updating bounding box coordinates for smooth and accurate tracking. As the video plays, users observe real-time motion of the tracked object's bounding box, reflecting its movement in the scene. With efficient frame processing, display updates, and intuitive controls, the application ensures a seamless user experience, suitable for diverse object tracking tasks. The fourth project in chapter two implements object tracking through the CAMShift (Continuously Adaptive Mean Shift) algorithm within a Tkinter-based graphical user interface (GUI). CAMShift, an extension of the Mean Shift algorithm, is tailored for object tracking in computer vision applications. Upon running the script, a window titled "Object Tracking with CAMShift" emerges, housing various GUI components. Users can open a video file via the "Open Video" button, loading supported formats such as .mp4, .avi, or .mkv. Playback controls allow for video manipulation, including play, pause, stop, and frame navigation, complemented by a zoom adjustment feature. During playback, the current frame number is displayed, aiding progress tracking. The core functionality centers on object tracking, where users can draw a bounding box around the object of interest on the video canvas. The CAMShift algorithm then continuously tracks this object within the bounding box across subsequent frames, updating its position in real-time. Additionally, the GUI presents the center coordinates of the bounding box in a list box, enhancing tracking insights. In summary, this script furnishes a user-friendly platform for object tracking via the CAMShift algorithm, facilitating visualization and analysis of object movement within video files. The fifth project in chapter two implements object tracking utilizing the MeanShift algorithm within a Tkinter-based graphical user interface (GUI). The script organizes its functionalities into five components: GUI Setup, GUI Components, Video Playback and Object Tracking, Bounding Box Interaction, and Main Function and Execution. Firstly, the script initializes the GUI window and essential attributes, including video file details and tracking status. Secondly, it structures the GUI layout, incorporating panels for video display and control buttons. Thirdly, methods for video playback control and object tracking are provided, enabling functionalities like opening video files, playing/pausing, and navigating frames. The MeanShift algorithm tracks objects within bounding boxes interactively manipulated by users through click-and-drag interactions. Lastly, the main function initializes the GUI application and starts the Tkinter event loop, launching the MeanShift-based object tracking interface. Overall, the project offers an intuitive platform for video playback, object tracking, and interactive bounding box manipulation, supporting diverse computer vision applications such as object detection and surveillance. The sixth project in chapter two introduces a video processing application utilizing the Kalman Filter for precise object tracking. Implemented with Tkinter, the application offers a graphical user interface (GUI) enabling users to open video files, control playback, and navigate frames. Its core objective is to accurately track a specified object across video frames. Upon initialization, the GUI elements, including control buttons, a canvas for video display, and a list box for center coordinate representation, are set up. The Kalman Filter, initialized with appropriate matrices for prediction and correction, enhances tracking accuracy. Upon opening a video file, the application loads and displays the first frame, enabling users to manipulate playback and frame navigation. During playback, the Kalman Filter algorithm is employed for object tracking. The track_object method orchestrates this process, extracting the region of interest (ROI), calculating histograms, and applying Kalman Filter prediction and correction steps to estimate the object's position. Updated bounding box coordinates are displayed on the canvas, while center coordinates are added to the list box. Overall, this user-friendly application showcases the Kalman Filter's effectiveness in video object tracking, providing smoother and more accurate results compared to traditional methods like MeanShift.
Download or read book Biomedical Image Analysis written by Aly A. Farag and published by Cambridge University Press. This book was released on 2014-10-30 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for classroom use and self-study, this book explains the implementation of the most effective modern methods in image analysis, covering segmentation, registration and visualisation, and focusing on the key theories, algorithms and applications that have emerged from recent progress in computer vision, imaging and computational biomedical science. Structured around five core building blocks - signals, systems, image formation and modality; stochastic models; computational geometry; level set methods; and tools and CAD models - it provides a solid overview of the field. Mathematical and statistical topics are presented in a straightforward manner, enabling the reader to gain a deep understanding of the subject without becoming entangled in mathematical complexities. Theory is connected to practical examples in x-ray, ultrasound, nuclear medicine, MRI and CT imaging, removing the abstract nature of the models and assisting reader understanding.
Download or read book Mathematics Advances in Research and Application 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-06-21 with total page 939 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics—Advances in Research and Application: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about ZZZAdditional Research in a concise format. The editors have built Mathematics—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about ZZZAdditional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Mathematics—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book The Psychophysics of Learning written by John N. Moye Ph.D. and published by Emerald Group Publishing. This book was released on 2021-06-22 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Psychophysics of Learning presents a learning system design approach that is formulated by the strategies and techniques the brain uses to process external information and make sense of that information to the learning ecology of all learners.
Download or read book HAAR CASCADES OBJECT RECOGNITION WITH TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-12-15 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project, we explored a Python script designed for object recognition using Haar Cascades within a graphical user interface (GUI) built with the Tkinter library. The script was organized into multiple modules, each serving a distinct purpose. The core functionality was encapsulated within the Form_Haar_Cascades class, which defined a Tkinter window containing various widgets for specifying parameters and visualizing object detection results. The class utilized Haar Cascades for detecting facial features, such as eyes, noses, and mouths, in images. It also integrated noise generation features through the Noise_Utils class, enhancing the versatility of the object recognition application. A key aspect of the script was the integration of noise parameters, allowing users to introduce different types of noise (e.g., Gaussian, salt-and-pepper) to the input image before applying Haar Cascades. This feature was facilitated by the Noise_Utils class, which utilized NumPy and OpenCV for image manipulation. Additionally, the GUI offered flexibility by enabling users to adjust Haar Cascades parameters, such as the scale factor, minimum neighbors, and line width, through interactive widgets. The plotting capabilities of the application were extended using the Plot_Utils class, which created a separate window for visualizing the results of Haar Cascades object detection. This additional functionality enhanced the user experience by providing a dedicated space for exploring the outcomes of different object detection scenarios. The modular design of the script, with distinct classes for Haar Cascades, noise generation, and plotting, promoted code organization and maintainability. The main program, represented by the Main_Program class, orchestrated the integration of these components, configuring the layout of the main Tkinter window, handling event bindings, and managing the overall flow of the GUI application. Finally, the script was encapsulated in a conditional block that checked if the script was executed as the main program. If so, it instantiated the Tkinter root window, initialized the Main_Program class, and entered the Tkinter event loop to display the GUI. This ensured that the application could be run independently, launching the GUI for users to interact with and explore Haar Cascades object recognition with integrated noise features.
Download or read book Science written by Bertrand Zavidovique and published by World Scientific. This book was released on 2012 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gathers articles that were exposed during the seventh edition of the Workshop ?Data Analysis in Astronomy?. It illustrates a current trend to search for common expressions or models transcending usual disciplines, possibly associated with some lack in the Mathematics required to model complex systems. In that, data analysis would be at the epicentre and a key facilitator of some current integrative phase of Science.It is all devoted to the question of ?representation in Science?, whence its name, IMAGe IN AcTION, and main thrusts Part A: Information: data organization and communication, Part B: System: structure and behaviour, Part C: Data ? System representation. Such a classification makes concepts as ?complexity? or ?dynamics? appear like transverse notions: a measure among others or a dimensional feature among others.Part A broadly discusses a dialogue between experiments and information, be information extracted-from or brought-to experiments. The concept is fundamental in statistics and tailors to the emergence of collective behaviours. Communication then asks for uncertainty considerations ? noise, indeterminacy or approximation ? and its wider impact on the couple perception-action. Clustering being all about uncertainty handling, data set representation appears not to be the only solution: Introducing hierarchies with adapted metrics, a priori pre-improving the data resolution are other methods in need of evaluation. The technology together with increasing semantics enables to involve synthetic data as simulation results for the multiplication of sources.Part B plays with another couple important for complex systems: state vs. transition. State-first descriptions would characterize physics, while transition-first would fit biology. That could stem from life producing dynamical systems in essence. Uncertainty joining causality here, geometry can bring answers: stable patterns in the state space involve constraints from some dynamics consistency. Stable patterns of activity characterize biological systems too. In the living world, the complexity ? i.e. a global measure on both states and transitions ? increases with consciousness: this might be a principle of evolution. Beside geometry or measures, operators and topology have supporters for reporting on dynamical systems. Eventually targeting universality, the category theory of topological thermodynamics is proposed as a foundation of dynamical system understanding.Part C details examples of actual data-system relations in regards to explicit applications and experiments. It shows how pure computer display and animation techniques link models and representations to ?reality? in some ?concrete? virtual, manner. Such techniques are inspired from artificial life, with no connection to physical, biological or physiological phenomena! The Virtual Observatory is the second illustration of the evidence that simulation helps Science not only in giving access to more flexible parameter variability, but also due to the associated data and method storing-capabilities. It fosters interoperability, statistics on bulky corpuses, efficient data mining possibly through the web etc. in short a reuse of resources in general, including novel ideas and competencies. Other examples deal more classically with inverse modelling and reconstruction, involving Bayesian techniques or chaos but also fractal and symmetry.
Download or read book Computational Color Imaging written by Shoji Tominaga and published by Springer. This book was released on 2013-03-02 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th Computational Color Imaging Workshop, CCIW 2013, held in Chiba, Japan, in March 2013. The 21 revised full papers, presented together with 4 invited papers, were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on color image perception; color combination; multi-spectral image analysis and rendering; color image detection and classification; color image features; and color image filtering and enhancement.
Download or read book Image Analysis and Recognition written by Aurélio Campilho and published by Springer Science & Business Media. This book was released on 2010-06-09 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the 7th International Conference, ICIAR 2010, held in Póvoa de Varzin, Portugal in June 2010. The 88 revised full papers were selected from 164 submissions. The papers are organized in topical sections on Image Morphology, Enhancement and Restoration, Image Segmentation, Featue Extraction and Pattern Recognition, Computer Vision, Shape, Texture and Motion Analysis, Coding, Indexing, and Retrieval, Face Detection and Recognition, Biomedical Image Analysis, Biometrics and Applications
Download or read book OBJECT TRACKING METHODS WITH OPENCV AND TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2024-04-26 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first project, BoostingTracker.py, is a Python application that leverages the Tkinter library for creating a graphical user interface (GUI) to track objects in video sequences. By utilizing OpenCV for the underlying video processing and object tracking mechanics, alongside imageio for handling video files, PIL for image displays, and matplotlib for visualization tasks, the script facilitates robust tracking capabilities. At the heart of the application is the BoostingTracker class, which orchestrates the GUI setup, video loading, and management of tracking states like playing, pausing, or stopping the video, along with enabling frame-by-frame navigation and zoom functionalities. Upon launching, the application allows users to load a video through a dialog interface, select an object to track by drawing a bounding box, and then observe the tracker in action as it follows the object across frames. Users can interact with the video playback through intuitive controls for adjusting the zoom level and applying various image filters such as Gaussian blur or wavelet transforms to enhance video clarity and tracking accuracy. Additional features include the display of object center coordinates in real-time and the capability to analyze color histograms of the tracked areas, providing insights into color distribution and intensity for more detailed image analysis. The BoostingTracker.py combines these features into a comprehensive package that supports extensive customization and robust error handling, making it a valuable tool for applications ranging from surveillance to multimedia content analysis. The second project, MedianFlowTracker, utilizes the Python Tkinter GUI library to provide a robust platform for video-based object tracking using the MedianFlow algorithm, renowned for its effectiveness in tracking small and slow-moving objects. The application facilitates user interaction through a feature-rich interface where users can load videos, select objects within frames via mouse inputs, and use playback controls such as play, pause, and stop. Users can also navigate through video frames and utilize a zoom feature for detailed inspections of specific areas, enhancing the usability and accessibility of video analysis. Beyond basic tracking, the MedianFlowTracker offers advanced customization options allowing adjustments to tracking parameters like window size and the number of grid points, catering to diverse tracking needs across different video types. The application also includes a variety of image processing filters such as Gaussian blur, median filtering, and more sophisticated methods like anisotropic diffusion and wavelet transforms, which users can apply to video frames to either improve tracking outcomes or explore image processing techniques. These features, combined with the potential for easy integration of new algorithms and enhancements due to its modular design, make the MedianFlowTracker a valuable tool for educational, research, and practical applications in digital image processing and video analysis. The third project, MILTracker, leverages Python's Tkinter GUI library to provide a sophisticated tool for tracking objects in video sequences using the Multiple Instance Learning (MIL) tracking algorithm. This application excels in environments where the training instances might be ambiguously labeled, treating groups of pixels as "bags" to effectively handle occlusions and visual complexities in videos. Users can dynamically interact with the video, initializing tracking by selecting objects with a bounding box and adjusting tracking parameters in real-time to suit various scenarios. The application interface is intuitive, offering functionalities like video playback control, zoom adjustments, frame navigation, and the application of various image processing filters to improve tracking accuracy. It supports extensive customization through an adjustable control panel that allows modification of tracking windows, grid points, and other algorithm-specific parameters. Additionally, the MILTracker logs the movement trajectory of tracked objects, providing valuable data for analysis and further refinement of the tracking process. Designed for extensibility, the architecture facilitates the integration of new tracking methods and enhancements, making it a versatile tool for applications ranging from surveillance to sports analysis. The fourth project, MOSSETracker, is a GUI application crafted with Python's Tkinter library, utilizing the MOSSE (Minimum Output Sum of Squared Error) tracking algorithm to enhance real-time object tracking within video sequences. Aimed at users with interests in computer vision, the application combines essential video playback functionalities with powerful object tracking capabilities through the integration of OpenCV. This setup provides an accessible platform for those looking to delve into the dynamics of video processing and tracking technologies. Structured for ease of use, the application presents a straightforward interface that includes video controls, zoom adjustments, and display of tracked object coordinates. Users can initiate tracking by selecting an object within the video through a draggable bounding box, which the MOSSE algorithm uses to maintain tracking across frames. Additionally, the application offers a suite of image processing filters like Gaussian blur and wavelet transformations to enhance tracking accuracy or demonstrate processing techniques. Overall, MOSSETracker not only facilitates effective object tracking but also serves as an educational tool, allowing users to experiment with and learn about advanced video analysis and tracking methods within a practical, user-friendly environment. The fifth project, KCFTracker, is utilizing Kernelized Correlation Filters (KCF) for object tracking, is a comprehensive application built using Python. It incorporates several libraries such as Tkinter for GUI development, OpenCV for robust image processing, and ImageIO for video stream handling. This application offers an intuitive GUI that allows users to upload videos, manually draw bounding boxes to identify areas of interest, and adjust tracking parameters in real-time to optimize performance. Key features include the ability to apply a variety of image filters to enhance video quality and tracking accuracy under varying conditions, and advanced functionalities like real-time tracking updates and histogram analysis for in-depth examination of color distributions within the video frame. This melding of interactive elements, real-time processing capabilities, and analytical tools establishes the MILTracker as a versatile and educational platform for those delving into computer vision. The sixth project, CSRT (Channel and Spatial Reliability Tracker), features a high-performance tracking algorithm encapsulated in a Python application that integrates OpenCV and the Tkinter graphical user interface, making it a versatile tool for precise object tracking in various applications like surveillance and autonomous vehicle navigation. The application offers a user-friendly interface that includes video playback, interactive controls for real-time parameter adjustments, and manual bounding box adjustments to initiate and guide the tracking process. The CSRT tracker is adept at handling variations in object appearance, lighting, and occlusions due to its utilization of both channel reliability and spatial information, enhancing its effectiveness across challenging scenarios. The application not only facilitates robust tracking but also provides tools for video frame preprocessing, such as Gaussian blur and adaptive thresholding, which are essential for optimizing tracking accuracy. Additional features like zoom controls, frame navigation, and advanced analytical tools, including histogram analysis and wavelet transformations, further enrich the user experience and provide deep insights into the video content being analyzed.
Download or read book Medical Imaging Systems Technology Volume 1 Analysis And Computational Methods written by Cornelius T Leondes and published by World Scientific. This book was released on 2005-08-25 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.
Download or read book Neuronal Network Research Horizons written by Martin L. Weiss and published by Nova Publishers. This book was released on 2007 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In neuroscience, a neural network is a bit of conceptual juggernaut: the conceptual transition from neuroanatomy, a rigorously descriptive discipline of observed structure, to the designation of the parameters delimiting a 'network' can be problematic. In outline a neural network describes a population of physically interconnected neurons or a group of disparate neurons whose inputs or signalling targets define a recognisable circuit. Communication between neurons often involves an electrochemical process. The interface through which they interact with surrounding neurons usually consists of several dendrites (input connections), which are connected via synapses to other neurons, and one axon (output connection). If the sum of the input signals surpasses a certain threshold, the neuron sends an action potential (AP) at the axon hillock and transmits this electrical signal along the axon. This important book presents the latest research in this field.
Download or read book Advanced Research in Applied Artificial Intelligence written by He Jiang and published by Springer. This book was released on 2012-06-30 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the thoroughly refereed conference proceedings of the 25th International Conference on Industrial Engineering and Other Applications of Applied Intelligend Systems, IEA/AIE 2012, held in Dalian, China, in June 2012. The total of 82 papers selected for the proceedings were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on machine learning methods; cyber-physical system for intelligent transportation applications; AI applications; evolutionary algorithms, combinatorial optimization; modeling and support of cognitive and affective human processes; natural language processing and its applications; social network and its applications; mission-critical applications and case studies of intelligent systems; AI methods; sentiment analysis for asian languages; aspects on cognitive computing and intelligent interaction; spatio-temporal datamining, structured learning and their applications; decision making and knowledge based systems; pattern recognition; agent based systems; decision making techniques and innovative knowledge management; machine learning applications.
Download or read book GRADIENT BASED BLOCK MATCHING MOTION ESTIMATION AND OBJECT TRACKING WITH PYTHON AND TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2024-04-17 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first project, gui_motion_analysis_gbbm.py, is designed to streamline motion analysis in videos using the Gradient-Based Block Matching Algorithm (GBBM) alongside a user-friendly Graphical User Interface (GUI). It encompasses various objectives, including intuitive GUI design with Tkinter, enabling video playback control, performing optical flow analysis, and allowing parameter configuration for tailored motion analysis. The GUI also facilitates interactive zooming, frame-wise analysis, and offers visual feedback through motion vector overlays. Robust error handling and multi-instance support enhance stability and usability, while dynamic title updates provide context within the interface. Overall, the project empowers users with a versatile tool for comprehensive motion analysis in videos. By integrating the GBBM algorithm with an intuitive GUI, gui_motion_analysis_gbbm.py simplifies motion analysis in videos. Its objectives range from GUI design to parameter configuration, enabling users to control video playback, perform optical flow analysis, and visualize motion patterns effectively. With features like interactive zooming, frame-wise analysis, and visual feedback, users can delve into motion dynamics seamlessly. Robust error handling ensures stability, while multi-instance support allows for concurrent analysis. Dynamic title updates enhance user awareness, culminating in a versatile tool for in-depth motion analysis. The second project, gui_motion_analysis_gbbm_pyramid.py, is dedicated to offering an accessible interface for video motion analysis, employing the Gradient-Based Block Matching Algorithm (GBBM) with a Pyramid Approach. Its objectives encompass several crucial aspects. Primarily, the project responds to the demand for motion analysis in video processing across diverse domains like computer vision and robotics. By integrating the GBBM algorithm into a GUI, it democratizes motion analysis, catering to users without specialized programming or computer vision skills. Leveraging the GBBM algorithm's effectiveness, particularly with the Pyramid Approach, enhances performance and robustness, enabling accurate motion estimation across various scales. The GUI offers extensive control options and visualization features, empowering users to customize analysis parameters and inspect motion dynamics comprehensively. Overall, this project endeavors to advance video processing and analysis by providing an intuitive interface backed by cutting-edge algorithms, fostering accessibility and efficiency in motion analysis tasks. The third project, gui_motion_analysis_gbbm_adaptive.py, introduces a GUI application for video motion estimation, employing the Gradient-Based Block Matching Algorithm (GBBM) with Adaptive Block Size. Users can interact with video files, control playback, navigate frames, and visualize optical flow between consecutive frames, facilitated by features like zooming and panning. Developed with Tkinter in Python, the GUI provides intuitive controls for adjusting motion estimation parameters and playback options upon launch. At its core, the application dynamically adjusts block sizes based on local gradient magnitude, enhancing motion estimation accuracy, especially in areas with varying complexity. Utilizing PIL and OpenCV libraries, it handles image processing tasks and video file operations, enabling users to interact with the video display canvas for enhanced analysis. Overall, gui_motion_analysis_gbbm_adaptive.py offers a versatile solution for motion analysis in videos, empowering users with visualization tools and parameter customization for diverse applications like video compression and object tracking. The fourth project, gui_motion_analysis_gbbm_lucas_kanade.py, introduces a GUI for motion estimation in videos, incorporating both the Gradient-Based Block Matching Algorithm (GBBM) and Lucas-Kanade Optical Flow. It begins by importing necessary libraries such as tkinter for GUI development, PIL for image processing, imageio for video file handling, cv2 for computer vision operations, and numpy for numerical computation. The VideoGBBM_LK_OpticalFlow class serves as the application container, initializing attributes and defining methods for video loading, playback control, parameter setting, frame display, and optical flow visualization. With features like zooming, panning, and event handling for user interactions, the script offers a comprehensive tool for visualizing and analyzing motion dynamics in videos using two distinct optical flow estimation techniques. The fifth project, gui_motion_analysis_gbbm_sift.py, introduces a GUI application for optical flow analysis in videos, employing both the Gradient-Based Block Matching Algorithm (GBBM) and Scale-Invariant Feature Transform (SIFT). It begins by importing essential libraries such as tkinter for GUI development, PIL for image processing, imageio for video handling, and OpenCV for computer vision tasks like optical flow computation. The VideoGBBM_SIFT_OpticalFlow class orchestrates the application, initializing GUI elements and defining methods for video loading, playback control, frame display, and optical flow computation using both GBBM and SIFT algorithms. With features for parameter adjustment, frame navigation, zooming, and event handling for user interactions, the script offers a user-friendly interface for in-depth optical flow analysis, enabling insights into motion patterns and dynamics within videos. The sixth project, gui_motion_analysis_gbbm_orb.py script, offers a user-friendly interface for motion estimation in videos, utilizing both the Gradient-Based Block Matching Algorithm (GBBM) and ORB (Oriented FAST and Rotated BRIEF) optical flow techniques. Its primary goal is to enable users to analyze and visualize motion dynamics within video files effortlessly. The GUI application provides functionalities for opening video files, navigating frames, adjusting parameters like zoom scale and step size, and controlling playback with buttons for play, pause, stop, next frame, and previous frame. Key to the application's functionality is its ability to compute and visualize optical flow using both GBBM and ORB algorithms. Optical flow, depicting object motion in videos, is represented with vectors overlaid on video frames, aiding users in understanding motion patterns and dynamics. Interactive features such as mouse wheel zooming and dragging enhance user exploration of video frames and optical flow visualizations, allowing dynamic adjustment of viewing perspective to focus on specific regions or analyze motion at different scales. Overall, this project provides a comprehensive tool for video motion analysis, merging user-friendly interface elements with advanced motion estimation techniques to empower users in tasks ranging from surveillance to computer vision research. The seventh project showcases object tracking using the Gradient-Based Block Matching Algorithm (GBBM), vital in various computer vision applications like surveillance and robotics. By continuously locating and tracking objects of interest in video streams, it highlights GBBM's practical application for real-time tracking. The GUI interface simplifies interaction with video files, allowing easy opening and visualization of frames. Users control playback, navigate frames, and adjust zoom scale, while the heart of the project lies in GBBM's implementation for tracking objects. GBBM estimates object motion by comparing pixel blocks between consecutive frames, generating motion vectors that describe the object's movement. Users can select regions of interest for tracking, adjust algorithm parameters, and receive visual feedback through dynamically adjusting bounding boxes around tracked objects, making it an educational tool for experimenting with object tracking techniques within an accessible interface. The eight project endeavors to create an application for object tracking using the Gradient-Based Block Matching Algorithm (GBBM) with a Pyramid Approach, catering to various computer vision applications like surveillance and autonomous vehicles. Built with Tkinter in Python, the user-friendly interface presents controls for video display, object tracking, and parameter adjustment upon launch. Users can load video files, play, pause, navigate frames, and adjust zoom levels effortlessly. Central to the application is the GBBM algorithm with a pyramid approach for robust object tracking. By refining search spaces at multiple resolutions, it efficiently estimates motion vectors, accommodating scale variations and occlusions. The application visualizes tracked objects with bounding boxes on the video canvas and updates object coordinates dynamically, providing users with insights into object movement. Advanced features, including dynamic parameter adjustment, enhance the algorithm's adaptability, enabling users to fine-tune tracking based on video characteristics and requirements. Overall, this project offers a practical implementation of object tracking within an accessible interface, catering to users across expertise levels in computer vision. The ninth project, "Object Tracking with Gradient-Based Block Matching Algorithm (GBBM) with Adaptive Block Size", focuses on developing a graphical user interface (GUI) application for object tracking in video files using computer vision techniques. Leveraging the GBBM algorithm, a prominent method for motion estimation, the project aims to enable efficient object tracking across video frames, enhancing user interaction and real-time monitoring capabilities. The GUI interface facilitates seamless video file loading, playback control, frame navigation, and real-time object tracking, empowering users to interact with video frames, adjust zoom levels, and monitor tracked object coordinates throughout the video sequence. Central to the project's functionality is the adaptive block size variant of the GBBM algorithm, dynamically adjusting block sizes based on gradient magnitudes to improve tracking accuracy and robustness across various scenarios. By simplifying object tracking processes through intuitive GUI interactions, the project caters to users with limited programming expertise, fostering learning opportunities in computer vision and video processing. Additionally, the project serves as a platform for collaboration and experimentation, promoting knowledge sharing and innovation within the computer vision community while showcasing the practical applications of computer vision algorithms in surveillance, video analysis, and human-computer interaction domains. The tenth project, "Object Tracking with SIFT Algorithm", introduces a GUI application developed with Python's tkinter library for tracking objects in videos using the Scale-Invariant Feature Transform (SIFT) algorithm. Upon launching, users access a window featuring video display, center coordinates of tracked objects, and control buttons. Supported video formats include mp4, avi, mkv, and wmv, with the "Open Video" button enabling file selection for display within the canvas widget. Playback control buttons like "Play/Pause," "Stop," "Previous Frame," and "Next Frame" facilitate seamless navigation and video playback adjustments. A zoom combobox enhances user experience by allowing flexible zoom scaling. The SIFT algorithm facilitates object tracking by detecting and matching keypoints between frames, estimating motion vectors used to update the bounding box coordinates of the tracked object in real-time. Users can manually define object bounding boxes by clicking and dragging on the video canvas, offering both automated and manual tracking options for enhanced user control. The eleventh project, "Object Tracking with ORB (Oriented FAST and Rotated BRIEF)", aims to develop a user-friendly GUI application for object tracking in videos using the ORB algorithm. Utilizing Python's Tkinter library, the project provides an interface where users can open video files of various formats and interact with playback and tracking functionalities. Users can control video playback, adjust zoom levels for detailed examination, and utilize the ORB algorithm for object detection and tracking. The application integrates ORB for computing keypoints and descriptors across video frames, facilitating the estimation of motion vectors for object tracking. Real-time visualization of tracking progress through overlaid bounding boxes enhances user understanding, while interactive features like selecting regions of interest and monitoring bounding box coordinates provide further control and feedback. Overall, the "Object Tracking with ORB" project offers a comprehensive solution for video analysis tasks, combining intuitive controls, real-time visualization, and efficient tracking capabilities with the ORB algorithm.