EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Random Perturbations of Hamiltonian Systems

Download or read book Random Perturbations of Hamiltonian Systems written by Mark Iosifovich Freĭdlin and published by American Mathematical Soc.. This book was released on 1994 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random perturbations of Hamiltonian systems in Euclidean spaces lead to stochastic processes on graphs, and these graphs are defined by the Hamiltonian. In the case of white-noise type perturbations, the limiting process will be a diffusion process on the graph. Its characteristics are expressed through the Hamiltonian and the characteristics of the noise. Freidlin and Wentzell calculate the process on the graph under certain conditions and develop a technique which allows consideration of a number of asymptotic problems. The Dirichlet problem for corresponding elliptic equations with a small parameter are connected with boundary problems on the graph.

Book Random Perturbations of Dynamical Systems

Download or read book Random Perturbations of Dynamical Systems written by M. I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotical problems have always played an important role in probability theory. In classical probability theory dealing mainly with sequences of independent variables, theorems of the type of laws of large numbers, theorems of the type of the central limit theorem, and theorems on large deviations constitute a major part of all investigations. In recent years, when random processes have become the main subject of study, asymptotic investigations have continued to playa major role. We can say that in the theory of random processes such investigations play an even greater role than in classical probability theory, because it is apparently impossible to obtain simple exact formulas in problems connected with large classes of random processes. Asymptotical investigations in the theory of random processes include results of the types of both the laws of large numbers and the central limit theorem and, in the past decade, theorems on large deviations. Of course, all these problems have acquired new aspects and new interpretations in the theory of random processes.

Book Random Perturbation Methods with Applications in Science and Engineering

Download or read book Random Perturbation Methods with Applications in Science and Engineering written by Anatoli V. Skorokhod and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.

Book Random Perturbations of Dynamical Systems

Download or read book Random Perturbations of Dynamical Systems written by Mark I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: A treatment of various kinds of limit theorems for stochastic processes defined as a result of random perturbations of dynamical systems. Apart from the long-time behaviour of the perturbed system, exit problems, metastable states, optimal stabilisation, and asymptotics of stationary distributions are considered in detail. The authors'main tools are the large deviation theory, the central limit theorem for stochastic processes, and the averaging principle. The results allow for explicit calculations of the asymptotics of many interesting characteristics of the perturbed system, and most of these results are closely connected with PDEs. This new edition contains expansions on the averaging principle, a new chapter on random perturbations of Hamiltonian systems, along with new results on fast oscillating perturbations of systems with conservation laws. New sections on wave front propagation in semilinear PDEs and on random perturbations of certain infinite-dimensional dynamical systems have been incorporated into the chapter on sharpenings and generalisations.

Book Topics in Stochastic Analysis and Nonparametric Estimation

Download or read book Topics in Stochastic Analysis and Nonparametric Estimation written by Pao-Liu Chow and published by Springer Science & Business Media. This book was released on 2010-07-19 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: To honor Rafail Z. Khasminskii, on his seventy-fifth birthday, for his contributions to stochastic processes and nonparametric estimation theory an IMA participating institution conference entitled "Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems" was held. This volume commemorates this special event. Dedicated to Professor Khasminskii, it consists of nine papers on various topics in probability and statistics.

Book Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Download or read book Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations written by Anatoliy M. Samoilenko and published by World Scientific. This book was released on 2011 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Differential equations with random right-hand sides and impulsive effects. 1.1. An impulsive process as a solution of an impulsive system. 1.2. Dissipativity. 1.3. Stability and Lyapunov functions. 1.4. Stability of systems with permanently acting random perturbations. 1.5. Solutions periodic in the restricted sense. 1.6. Periodic solutions of systems with small perturbations. 1.7. Periodic solutions of linear impulsive systems. 1.8. Weakly nonlinear systems. 1.9. Comments and references -- 2. Invariant sets for systems with random perturbations. 2.1. Invariant sets for systems with random right-hand sides. 2.2. Invariant sets for stochastic Ito systems. 2.3. The behaviour of invariant sets under small perturbations. 2.4. A study of stability of an equilibrium via the reduction principle for systems with regular random perturbations. 2.5. Stability of an equilibrium and the reduction principle for Ito type systems. 2.6. A study of stability of the invariant set via the reduction principle. Regular perturbations. 2.7. Stability of invariant sets and the reduction principle for Ito type systems. 2.8. Comments and references -- 3. Linear and quasilinear stochastic Ito systems. 3.1. Mean square exponential dichotomy. 3.2. A study of dichotomy in terms of quadratic forms. 3.3. Linear system solutions that are mean square bounded on the semiaxis. 3.4. Quasilinear systems. 3.5. Linear system solutions that are probability bounded on the axis. A generalized notion of a solution. 3.6. Asymptotic equivalence of linear systems. 3.7. Conditions for asymptotic equivalence of nonlinear systems. 3.8. Comments and references -- 4. Extensions of Ito systems on a torus. 4.1. Stability of invariant tori. 4.2. Random invariant tori for linear extensions. 4.3. Smoothness of invariant tori. 4.4. Random invariant tori for nonlinear extensions. 4.5. An ergodic theorem for a class of stochastic systems having a toroidal manifold. 4.6. Comments and references -- 5. The averaging method for equations with random perturbations. 5.1. A substantiation of the averaging method for systems with impulsive effect. 5.2. Asymptotics of normalized deviations of averaged solutions. 5.3. Applications to the theory of nonlinear oscillations. 5.4. Averaging for systems with impulsive effects at random times. 5.5. The second theorem of M.M. Bogolyubov for systems with regular random perturbations. 5.6. Averaging for stochastic Ito systems. An asymptotically finite interval. 5.7. Averaging on the semiaxis. 5.8. The averaging method and two-sided bounded solutions of Ito systems. 5.9. Comments and references

Book Geometric and Probabilistic Structures in Dynamics

Download or read book Geometric and Probabilistic Structures in Dynamics written by Keith Burns and published by American Mathematical Soc.. This book was released on 2008 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book presents a collection of articles that cover areas of mathematics related to dynamical systems. The authors are well-known experts who use geometric and probabilistic methods to study interesting problems in the theory of dynamical systems and its applications. Some of the articles are surveys while others are original contributions. The topics covered include: Riemannian geometry, models in mathematical physics and mathematical biology, symbolic dynamics, random and stochastic dynamics. This book can be used by graduate students and researchers in dynamical systems and its applications."--BOOK JACKET.

Book Regular and Stochastic Motion

Download or read book Regular and Stochastic Motion written by A. J. Lichtenberg and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats stochastic motion in nonlinear oscillator systems. It describes a rapidly growing field of nonlinear mechanics with applications to a number of areas in science and engineering, including astronomy, plasma physics, statistical mechanics and hydrodynamics. The main em phasis is on intrinsic stochasticity in Hamiltonian systems, where the stochastic motion is generated by the dynamics itself and not by external noise. However, the effects of noise in modifying the intrinsic motion are also considered. A thorough introduction to chaotic motion in dissipative systems is given in the final chapter. Although the roots of the field are old, dating back to the last century when Poincare and others attempted to formulate a theory for nonlinear perturbations of planetary orbits, it was new mathematical results obtained in the 1960's, together with computational results obtained using high speed computers, that facilitated our new treatment of the subject. Since the new methods partly originated in mathematical advances, there have been two or three mathematical monographs exposing these developments. However, these monographs employ methods and language that are not readily accessible to scientists and engineers, and also do not give explicit tech niques for making practical calculations. In our treatment of the material, we emphasize physical insight rather than mathematical rigor. We present practical methods for describing the motion, for determining the transition from regular to stochastic behavior, and for characterizing the stochasticity. We rely heavily on numerical computations to illustrate the methods and to validate them.

Book Chaotic Dynamics In Hamiltonian Systems  With Applications To Celestial Mechanics

Download or read book Chaotic Dynamics In Hamiltonian Systems With Applications To Celestial Mechanics written by Harry Dankowicz and published by World Scientific. This book was released on 1997-12-16 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past hundred years investigators have learned the significance of complex behavior in deterministic systems. The potential applications of this discovery are as numerous as they are encouraging.This text clearly presents the mathematical foundations of chaotic dynamics, including methods and results at the forefront of current research. The book begins with a thorough introduction to dynamical systems and their applications. It goes on to develop the theory of regular and stochastic behavior in higher-degree-of-freedom Hamiltonian systems, covering topics such as homoclinic chaos, KAM theory, the Melnikov method, and Arnold diffusion. Theoretical discussions are illustrated by a study of the dynamics of small circumasteroidal grains perturbed by solar radiation pressure. With alternative derivations and proofs of established results substituted for those in the standard literature, this work serves as an important source for researchers, students and teachers.Skillfully combining in-depth mathematics and actual physical applications, this book will be of interest to the applied mathematician, the theoretical mechanical engineer and the dynamical astronomer alike.

Book Symplectic Integration of Stochastic Hamiltonian Systems

Download or read book Symplectic Integration of Stochastic Hamiltonian Systems written by Jialin Hong and published by Springer Nature. This book was released on 2023-02-21 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite-dimensional stochastic Hamiltonian systems. The long-time dynamical behaviours under study involve symplectic structure, invariants, ergodicity and invariant measure. The emphasis is placed on the systematic construction and the probabilistic superiority of stochastic symplectic methods, which preserve the geometric structure of the stochastic flow of stochastic Hamiltonian systems. The problems considered in this book are related to several fascinating research hotspots: numerical analysis, stochastic analysis, ergodic theory, stochastic ordinary and partial differential equations, and rough path theory. This book will appeal to researchers who are interested in these topics.

Book Stochastic Geometric Mechanics

Download or read book Stochastic Geometric Mechanics written by Sergio Albeverio and published by Springer. This book was released on 2017-11-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting together contributed lectures and mini-courses, this book details the research presented in a special semester titled “Geometric mechanics – variational and stochastic methods” run in the first half of 2015 at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique Fédérale de Lausanne. The aim of the semester was to develop a common language needed to handle the wide variety of problems and phenomena occurring in stochastic geometric mechanics. It gathered mathematicians and scientists from several different areas of mathematics (from analysis, probability, numerical analysis and statistics, to algebra, geometry, topology, representation theory, and dynamical systems theory) and also areas of mathematical physics, control theory, robotics, and the life sciences, with the aim of developing the new research area in a concentrated joint effort, both from the theoretical and applied points of view. The lectures were given by leading specialists in different areas of mathematics and its applications, building bridges among the various communities involved and working jointly on developing the envisaged new interdisciplinary subject of stochastic geometric mechanics.

Book Stochastic Dynamics of Power Systems

Download or read book Stochastic Dynamics of Power Systems written by Ping Ju and published by Springer. This book was released on 2018-08-23 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses stochastic dynamics of power systems and the related analytical methodology. It summarizes and categorizes the stochastic elements of power systems and develops a framework for research on stochastic dynamics of power systems. It also establishes a research model for stochastic dynamics of power systems and theoretically proves stochastic stability in power systems. Further, in addition to demonstrating the stochastic oscillation mechanism in power systems, it also proposes methods for quantitative analysis and stochastic optimum control in the field of stochastic dynamic security in power systems. This book is a valuable resource for researchers, scholars and engineers in the field of electrics.

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book IUTAM Symposium on Nonlinear Stochastic Dynamics

Download or read book IUTAM Symposium on Nonlinear Stochastic Dynamics written by N. Sri Namachchivaya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.

Book Anticipative Girsanov Transformations and Skorohod Stochastic Differential Equations

Download or read book Anticipative Girsanov Transformations and Skorohod Stochastic Differential Equations written by Rainer Buckdahn and published by American Mathematical Soc.. This book was released on 1994 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a concise exposition of recent developments in anticipative stochastic calculus. The anticipative calculus uses tools from differential calculus and distribution theory on Wiener space to analyze stochastic integrals with integrands which can anticipate the future of the Brownian integrator. In particular, the Skorohod integral, defined as a dual operator to the Wiener space derivative, and the anticipating Stratonovich integrals are fundamental.

Book Construction of Mappings for Hamiltonian Systems and Their Applications

Download or read book Construction of Mappings for Hamiltonian Systems and Their Applications written by Sadrilla S. Abdullaev and published by Springer. This book was released on 2006-08-02 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.

Book New Trends in Mathematical Physics

Download or read book New Trends in Mathematical Physics written by Vladas Sidoravicius and published by Springer Science & Business Media. This book was released on 2009-08-31 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.