Download or read book Stochastic Neutron Transport written by Emma Horton and published by Springer Nature. This book was released on 2023-12-17 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph highlights the connection between the theory of neutron transport and the theory of non-local branching processes. By detailing this frequently overlooked relationship, the authors provide readers an entry point into several active areas, particularly applications related to general radiation transport. Cutting-edge research published in recent years is collected here for convenient reference. Organized into two parts, the first offers a modern perspective on the relationship between the neutron branching process (NBP) and the neutron transport equation (NTE), as well as some of the core results concerning the growth and spread of mass of the NBP. The second part generalizes some of the theory put forward in the first, offering proofs in a broader context in order to show why NBPs are as malleable as they appear to be. Stochastic Neutron Transport will be a valuable resource for probabilists, and may also be of interest to numerical analysts and engineers in the field of nuclear research.
Download or read book Mathematical Topics In Neutron Transport Theory New Aspects written by Mustapha Mokhtar Kharroubi and published by World Scientific. This book was released on 1997-12-18 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of c0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.
Download or read book Neutron Fluctuations written by Imre Pazsit and published by Elsevier. This book was released on 2007-10-05 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. Neutron Fluctuations presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular neutron fluctuations, in a self-contained manner - The first monograph containing the theory and application of neutron fluctuations in low power ADS (spallation and pulsed sources) - Suitable as a tutorial and handbook/reference book for scientists and graduate students - One of the authors is the founder of the mathematical theory of neutron fluctuations in zero power systems
Download or read book Handbook of Nuclear Engineering written by Dan Gabriel Cacuci and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 3701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
Download or read book Nuclear Computational Science written by Yousry Azmy and published by Springer Science & Business Media. This book was released on 2010-04-15 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.
Download or read book Applied Reactor Physics written by Alain Hébert and published by Presses inter Polytechnique. This book was released on 2009 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Monte Carlo Methods for Transport and Diffusion Equations written by Bernard Lapeyre and published by OUP Oxford. This book was released on 2003 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is used by for the resolution of partial differential equations, trasnport equations, the Boltzmann equation and the parabolic equations of diffusion.
Download or read book Monte Carlo Principles and Neutron Transport Problems written by Jerome Spanier and published by Courier Corporation. This book was released on 2008-01-01 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part treatment introduces the general principles of the Monte Carlo method within a unified mathematical point of view, applying them to problems in neutron transport. It describes several efficiency-enhancing approaches, including the method of superposition and simulation of the adjoint equation based on reciprocity. The first half of the book presents an exposition of the fundamentals of Monte Carlo methods, examining discrete and continuous random walk processes and standard variance reduction techniques. The second half of the text focuses directly on the methods of superposition and reciprocity, illustrating their applications to specific neutron transport problems. Topics include the computation of thermal neutron fluxes and the superposition principle in resonance escape computations.
Download or read book Fractional Calculus with Applications for Nuclear Reactor Dynamics written by Santanu Saha Ray and published by CRC Press. This book was released on 2015-07-29 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous way
Download or read book Neutron Diffusion written by S. Chakraverty and published by CRC Press. This book was released on 2017-04-21 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for a systematic understanding of nuclear diffusion theory along with fuzzy/interval/stochastic uncertainty. This will serve to be a benchmark book for graduate & postgraduate students, teachers, engineers and researchers throughout the globe. In view of the recent developments in nuclear engineering, it is important to study the basic concepts of this field along with the diffusion processes for nuclear reactor design. Also, it is known that uncertainty is a must in every field of engineering and science and, in particular, with regards to nuclear-related problems. As such, one may need to understand the nuclear diffusion principles/theories corresponding with reliable and efficient techniques for the solution of such uncertain problems. Accordingly this book aims to provide a new direction for readers with basic concepts of reactor physics as well as neutron diffusion theory. On the other hand, it also includes uncertainty (in terms of fuzzy, interval, stochastic) and their applications in nuclear diffusion problems in a systematic manner, along with recent developments. The underlying concepts of the presented methods in this book may very well be used/extended to various other engineering disciplines viz. electronics, marine, chemical, mining engineering and other sciences such as physics, chemistry, biotechnology etc. This book then can be widely applied wherever one wants to model their physical problems in terms of non-probabilistic methods viz. fuzzy/stochastic for the true essence of the real problems.
Download or read book Monte Carlo Methods for Particle Transport written by Alireza Haghighat and published by CRC Press. This book was released on 2020-08-09 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author’s research activities
Download or read book A Monte Carlo Primer written by Stephen A. Dupree and published by Springer Science & Business Media. This book was released on 2002 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.
Download or read book The Physics of Nuclear Reactors written by Serge Marguet and published by Springer. This book was released on 2018-02-26 with total page 1462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.
Download or read book Physics of Nuclear Reactors written by P. Mohanakrishnan and published by Elsevier. This book was released on 2021-05-19 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection
Download or read book Deterministic Numerical Methods for Unstructured Mesh Neutron Transport Calculation written by Liangzhi Cao and published by Woodhead Publishing. This book was released on 2020-08-30 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings. - Combines the theoretical models with numerical methods and results in one complete resource - Presents the latest progress on the topic in an easy-to-navigate format
Download or read book Nuclear Reactor Physics written by Weston M. Stacey and published by John Wiley & Sons. This book was released on 2018-02-07 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.
Download or read book Monte Carlo Methods and Stochastic Processes written by Emmanuel Gobet and published by CRC Press. This book was released on 2016-09-15 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from the author’s course at the Ecole Polytechnique, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear focuses on the simulation of stochastic processes in continuous time and their link with partial differential equations (PDEs). It covers linear and nonlinear problems in biology, finance, geophysics, mechanics, chemistry, and other application areas. The text also thoroughly develops the problem of numerical integration and computation of expectation by the Monte-Carlo method. The book begins with a history of Monte-Carlo methods and an overview of three typical Monte-Carlo problems: numerical integration and computation of expectation, simulation of complex distributions, and stochastic optimization. The remainder of the text is organized in three parts of progressive difficulty. The first part presents basic tools for stochastic simulation and analysis of algorithm convergence. The second part describes Monte-Carlo methods for the simulation of stochastic differential equations. The final part discusses the simulation of non-linear dynamics.