EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Methods in Fluid Mechanics

Download or read book Stochastic Methods in Fluid Mechanics written by Sergio Chibbaro and published by Springer Science & Business Media. This book was released on 2013-09-05 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechanics and notably dispersed two-phase flows. The aim is to develop what can referred to as stochastic modeling for a whole range of applications.

Book Stochastic Methods for Flow in Porous Media

Download or read book Stochastic Methods for Flow in Porous Media written by Dongxiao Zhang and published by Elsevier. This book was released on 2001-10-11 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties explores fluid flow in complex geologic environments. The parameterization of uncertainty into flow models is important for managing water resources, preserving subsurface water quality, storing energy and wastes, and improving the safety and economics of extracting subsurface mineral and energy resources. This volume systematically introduces a number of stochastic methods used by researchers in the community in a tutorial way and presents methodologies for spatially and temporally stationary as well as nonstationary flows. The author compiles a number of well-known results and useful formulae and includes exercises at the end of each chapter. Balanced viewpoint of several stochastic methods, including Greens' function, perturbative expansion, spectral, Feynman diagram, adjoint state, Monte Carlo simulation, and renormalization group methods Tutorial style of presentation will facilitate use by readers without a prior in-depth knowledge of Stochastic processes Practical examples throughout the text Exercises at the end of each chapter reinforce specific concepts and techniques For the reader who is interested in hands-on experience, a number of computer codes are included and discussed

Book Stochastic Processes in Polymeric Fluids

Download or read book Stochastic Processes in Polymeric Fluids written by Hans C. Öttinger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two strongly interweaved parts: the mathematical theory of stochastic processes and its applications to molecular theories of polymeric fluids. The comprehensive mathematical background provided in the first section will be equally useful in many other branches of engineering and the natural sciences. The second part provides readers with a more direct understanding of polymer dynamics, allowing them to identify exactly solvable models more easily, and to develop efficient computer simulation algorithms in a straightforward manner. In view of the examples and applications to problems taken from the front line of science, this volume may be used both as a basic textbook or as a reference book. Program examples written in FORTRAN are available via ftp from ftp.springer.de/pub/chemistry/polysim/.

Book Nonstandard Methods for Stochastic Fluid Mechanics

Download or read book Nonstandard Methods for Stochastic Fluid Mechanics written by Marek Capi?ski and published by World Scientific. This book was released on 1995 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of a new approach to the Navier-Stokes equations, using powerful techniques provided by nonstandard analysis, as developed by the authors. The topics studied include the existence and uniqueness of weak solutions, statistical solutions and the solution of general stochastic equations.The authors provide a self-contained introduction to nonstandard analysis, designed with applied mathematicians in mind and concentrated specifically on techniques applicable to the Navier-Stokes equations. The subsequent exposition shows how these new techniques allow a quick and intuitive entrance into the mathematical theory of hydrodynamics, as well as provide a research tool that has proven useful in solving open problems concerning stochastic equations.

Book Stochastic Methods in Engineering

Download or read book Stochastic Methods in Engineering written by I. St Doltsinis and published by WIT Press. This book was released on 2012 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing industrial demand for reliable quantification and management of uncertainty in product performance forces engineers to employ probabilistic models in analysis and design, a fact that has occasioned considerable research and development activities in the field. Notes on Stochastics eventually address the topic of computational stochastic mechanics. The single volume uniquely presents tutorials on essential probabilistics and statistics, recent finite element methods for stochastic analysis by Taylor series expansion as well as Monte Carlo simulation techniques. Design improvement and robust optimisation represent key issues as does reliability assessment. The subject is developed for solids and structures of elastic and elasto-plastic material, large displacements and material deformation processes; principles are transferable to various disciplines. A chapter is devoted to the statistical comparison of systems exhibiting random scatter. Where appropriate examples illustrate the theory, problems to solve appear instructive; applications are presented with relevance to engineering practice. The book, emanating from a university course, includes research and development in the field of computational stochastic analysis and optimization. It is intended for advanced students in engineering and for professionals who wish to extend their knowledge and skills in computational mechanics to the domain of stochastics. Contents: Introduction, Randomness, Structural analysis by Taylor series expansion, Design optimization, Robustness, Monte Carlo techniques for system response and design improvement, Reliability, Time variant phenomena, Material deformation processes, Analysis and comparison of data sets, Probability distribution of test functions.

Book Stochastic Tools in Turbulence

Download or read book Stochastic Tools in Turbulence written by John L. Lumley and published by Courier Corporation. This book was released on 2007-01-01 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible treatment offers the mathematical tools for describing and solving problems related to stochastic vector fields. Advanced undergraduates and graduate students will find its use of generalized functions a relatively simple method of resolving mathematical questions. It will prove a valuable reference for applied mathematicians and professionals in the fields of aerospace, chemical, civil, and nuclear engineering. The author, Professor Emeritus of Engineering at Cornell University, starts with a survey of probability distributions and densities and proceeds to examinations of moments, characteristic functions, and the Gaussian distribution; random functions; and random processes in more dimensions. Extensive appendixes—which include information on Fourier transforms, tensors, generalized functions, and invariant theory—contribute toward making this volume mathematically self-contained.

Book Stochastic Partial Differential Equations in Fluid Mechanics

Download or read book Stochastic Partial Differential Equations in Fluid Mechanics written by Franco Flandoli and published by Springer Nature. This book was released on 2023-06-11 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to stochastic Navier–Stokes equations and more generally to stochasticity in fluid mechanics. The two opening chapters describe basic material about the existence and uniqueness of solutions: first in the case of additive noise treated pathwise and then in the case of state-dependent noise. The main mathematical techniques of these two chapters are known and given in detail for using the book as a reference for advanced courses. By contrast, the third and fourth chapters describe new material that has been developed in very recent years or in works now in preparation. The new material deals with transport-type noise, its origin, and its consequences on dissipation and well-posedness properties. Finally, the last chapter is devoted to the physical intuition behind the stochastic modeling presented in the book, giving great attention to the question of the origin of noise in connection with small-scale turbulence, its mathematical form, and its consequences on large-scale properties of a fluid.

Book Spectral Methods for Uncertainty Quantification

Download or read book Spectral Methods for Uncertainty Quantification written by Olivier Le Maitre and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.

Book Polynomial Chaos Methods for Hyperbolic Partial Differential Equations

Download or read book Polynomial Chaos Methods for Hyperbolic Partial Differential Equations written by Mass Per Pettersson and published by Springer. This book was released on 2015-03-10 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.

Book Adaptive Stochastic Methods

Download or read book Adaptive Stochastic Methods written by Dmitry G. Arseniev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-01-09 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph develops adaptive stochastic methods in computational mathematics. The authors discuss the basic ideas of the algorithms and ways to analyze their properties and efficiency. Methods of evaluation of multidimensional integrals and solutions of integral equations are illustrated by multiple examples from mechanics, theory of elasticity, heat conduction and fluid dynamics. Contents Part I: Evaluation of Integrals Fundamentals of the Monte Carlo Method to Evaluate Definite Integrals Sequential Monte Carlo Method and Adaptive Integration Methods of Adaptive Integration Based on Piecewise Approximation Methods of Adaptive Integration Based on Global Approximation Numerical Experiments Adaptive Importance Sampling Method Based on Piecewise Constant Approximation Part II: Solution of Integral Equations Semi-Statistical Method of Solving Integral Equations Numerically Problem of Vibration Conductivity Problem on Ideal-Fluid Flow Around an Airfoil First Basic Problem of Elasticity Theory Second Basic Problem of Elasticity Theory Projectional and Statistical Method of Solving Integral Equations Numerically

Book Research Directions in Computational Mechanics

Download or read book Research Directions in Computational Mechanics written by National Research Council and published by National Academies Press. This book was released on 1991-02-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Book New Trends and Results in Mathematical Description of Fluid Flows

Download or read book New Trends and Results in Mathematical Description of Fluid Flows written by Miroslav Bulíček and published by Springer. This book was released on 2018-09-26 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents recent results and new trends in the theory of fluid mechanics. Each of the four chapters focuses on a different problem in fluid flow accompanied by an overview of available older results. The chapters are extended lecture notes from the ESSAM school "Mathematical Aspects of Fluid Flows" held in Kácov (Czech Republic) in May/June 2017. The lectures were presented by Dominic Breit (Heriot-Watt University Edinburgh), Yann Brenier (École Polytechnique, Palaiseau), Pierre-Emmanuel Jabin (University of Maryland) and Christian Rohde (Universität Stuttgart), and cover various aspects of mathematical fluid mechanics – from Euler equations, compressible Navier-Stokes equations and stochastic equations in fluid mechanics to equations describing two-phase flow; from the modeling and mathematical analysis of equations to numerical methods. Although the chapters feature relatively recent results, they are presented in a form accessible to PhD students in the field of mathematical fluid mechanics.

Book Statistical Mechanics of Turbulent Flows

Download or read book Statistical Mechanics of Turbulent Flows written by Stefan Heinz and published by Springer Science & Business Media. This book was released on 2003-08-04 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulation of turbulent reacting flows, connected with environmental protection and the design of chemical and mechanical processes, is increasingly important. Statistical Mechanics of Turbulent Flows presents a modern overview of basic ways to calculate such flows. It discusses the fundamental problems related to the use of basic equations and their modifications. Special emphasis is placed on the discussion of very promising statistical methods which provide solutions to these problems by models for the underlying stochastic physics of turbulent reacting flows. Their foundations and important new developments up through current challenges are systematically explained. Students and researchers in atmospheric sciences and oceanography, mechanical and chemical engineering and applied mathematics and physics may use Statistical Mechanics of Turbulent Flows as a guide to solve many problems related, e.g. to the assessment of complex atmospheric chemistry, chemical reactor processes, turbulent combustion, and multi-phase flows.

Book Probabilistic Methods in Fluids

Download or read book Probabilistic Methods in Fluids written by Ian Malcolm Davies and published by World Scientific. This book was released on 2003 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains recent research papers presented at the international workshop on ?Probabilistic Methods in Fluids? held in Swansea. The central problems considered were turbulence and the Navier-Stokes equations but, as is now well known, these classical problems are deeply intertwined with modern studies of stochastic partial differential equations, jump processes and random dynamical systems. The volume provides a snapshot of current studies in a field where the applications range from the design of aircraft through the mathematics of finance to the study of fluids in porous media.

Book Riemann Solvers and Numerical Methods for Fluid Dynamics

Download or read book Riemann Solvers and Numerical Methods for Fluid Dynamics written by Eleuterio F. Toro and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Book Analysis of Stochastic Partial Differential Equations

Download or read book Analysis of Stochastic Partial Differential Equations written by Davar Khoshnevisan and published by American Mathematical Soc.. This book was released on 2014-06-11 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.

Book Variational Models and Methods in Solid and Fluid Mechanics

Download or read book Variational Models and Methods in Solid and Fluid Mechanics written by Francesco dell'Isola and published by Springer Science & Business Media. This book was released on 2012-01-15 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.