EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Dynamics and Energetics of Biomolecular Systems

Download or read book Stochastic Dynamics and Energetics of Biomolecular Systems written by Artem Ryabov and published by Springer. This book was released on 2015-11-28 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory.

Book Stochastic Dynamics Of Reacting Biomolecules

Download or read book Stochastic Dynamics Of Reacting Biomolecules written by Werner Ebeling and published by World Scientific. This book was released on 2003-01-29 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about the physical processes in reacting complex molecules, particularly biomolecules. In the past decade scientists from different fields such as medicine, biology, chemistry and physics have collected a huge amount of data about the structure, dynamics and functioning of biomolecules. Great progress has been achieved in exploring the structure of complex molecules. However, there is still a lack of understanding of the dynamics and functioning of biological macromolecules. In particular this refers to enzymes, which are the basic molecular machines working in living systems. This book contributes to the exploration of the physical mechanisms of these processes, focusing on critical aspects such as the role of nonlinear excitations and of stochastic effects. An extensive range of original results has been obtained in the last few years by the authors, and these results are presented together with a comprehensive survey of the state of the art in the field.

Book Stochastic Energetics

Download or read book Stochastic Energetics written by Ken Sekimoto and published by Springer. This book was released on 2010-03-10 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics. Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations. This is needed to answer such novel questions as: Can one cool a drop of water by agitating an immersed nano-particle? How does heat flow if a Brownian particle pulls a polymer chain? Can one measure the free-energy of a system through a single realization of the associated stochastic process? This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers. It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.

Book Stochastic and Quantum Dynamics of Biomolecular Systems

Download or read book Stochastic and Quantum Dynamics of Biomolecular Systems written by Christopher Bernido and published by American Institute of Physics. This book was released on 2008-06-25 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conference Location and Date: Jagna, Bohol, Philippines, 3-5 January 2008

Book Stochastic Dynamics for Systems Biology

Download or read book Stochastic Dynamics for Systems Biology written by Christian Mazza and published by CRC Press. This book was released on 2016-04-19 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing

Book Computational Modeling And Simulations Of Biomolecular Systems

Download or read book Computational Modeling And Simulations Of Biomolecular Systems written by Benoit Roux and published by World Scientific. This book was released on 2021-08-23 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).

Book Biomolecular Structure and Dynamics

Download or read book Biomolecular Structure and Dynamics written by G. Vergoten and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomolecular Structure and Dynamics describes recent fundamental advances in the experimental and theoretical study of molecular dynamics and stochastic dynamic simulations, X-ray crystallography and NMR of biomolecules, the structure of proteins and its prediction, time resolved Fourier transform IR spectroscopy of biomolecules, the computation of free energy, applications of vibrational CD of nucleic acids, and solid state NMR. Further presentations include recent advances in UV resonance Raman spectroscopy of biomolecules, semiempirical MO methods, empirical force fields, quantitative studies of the structure of proteins in water by Fourier transform IR, and density functional theory. Metal-ligand interactions, DFT treatment of organometallic and biological systems, and simulation vs. X-ray and far IR experiments are also discussed in some detail. The book provides a broad perspective of the current theoretical aspects and recent experimental findings in the field of biomolecular dynamics, revealing future research trends, especially in areas where theoreticians and experimentalists could fruitfully collaborate.

Book Computer Simulation of Biomolecular Systems

Download or read book Computer Simulation of Biomolecular Systems written by W.F. van Gunsteren and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third volume in the series on Computer Simulation of Biomolecular Systems continues with the format introduced in the first volume [1] and elaborated in the second volume [2]. The primary emphasis is on the methodological aspects of simulations, although there are some chapters that present the results obtained for specific systems of biological interest. The focus of this volume has changed somewhat since there are several chapters devoted to structure-based ligand design, which had only a single chapter in the second volume. It seems useful to set the stage for this volume by quoting from my preface to Volume 2 [2]. "The long-range 'goal of molecular approaches to biology is to describe living systems in terms of chemistry and physics. Over the last fifty years great progress has been made in applying the equations representing the underlying physical laws to chemical problems involv ing the structures and reactions of small molecules. Corresponding studies of mesoscopic systems have been undertaken much more recently. Molecular dynamics simulations, which are the primary focus of this volume, represent the most important theoretical approach to macromolecules of biological interest." ...

Book Biomolecular Simulations in Structure Based Drug Discovery

Download or read book Biomolecular Simulations in Structure Based Drug Discovery written by Francesco L. Gervasio and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: -Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists -Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development -Offers numerous illustrative case studies from a wide-range of therapeutic fields -Presents an application-oriented reference that is ideal for those working in the various fields Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.

Book Biomolecular Feedback Systems

    Book Details:
  • Author : Domitilla Del Vecchio
  • Publisher : Princeton University Press
  • Release : 2014-10-26
  • ISBN : 0691161534
  • Pages : 286 pages

Download or read book Biomolecular Feedback Systems written by Domitilla Del Vecchio and published by Princeton University Press. This book was released on 2014-10-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu

Book Dynamics  Structure  and Function of Biological Macromolecules

Download or read book Dynamics Structure and Function of Biological Macromolecules written by Oleg Jardetzky and published by IOS Press. This book was released on 2001 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles looking at modern structural biology, summarizing the applications of physical methods - such as x-ray diffraction, high resolution nuclear magnetic resonance and molecular dynamics - to the study of protein structure and dynamics. There is a review of contemporary thoughts within the field, looking at the mechanisms of alloateric transitions and allosteric control, the transmission of information within protein structures and the role of dynamics in determining the specificity of protein - ligand interactions. There is also a look at future innovations.

Book Compendium of Biophysics

    Book Details:
  • Author : Andrey B. Rubin
  • Publisher : John Wiley & Sons
  • Release : 2017-07-21
  • ISBN : 111916026X
  • Pages : 660 pages

Download or read book Compendium of Biophysics written by Andrey B. Rubin and published by John Wiley & Sons. This book was released on 2017-07-21 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following up on his first book, Fundementals of Biophysics, the author, a well-known scientist in this area, builds on that foundation by offering the biologist or scientist an advanced, comprehensive coverage of biophysics. Structuring the book into four major parts, he thoroughly covers the biophysics of complex systems, such as the kinetics and thermodynamic processes of biological systems, in the first part. The second part is dedicated to molecular biophysics, such as biopolymers and proteins, and the third part is on the biophysics of membrane processes. The final part is on photobiological processes. This ambitious work is a must-have for the veteran biologist, scientist, or chemist working in this field, and for the novice or student, who is interested in learning about biophysics. It is an emerging field, becoming increasingly more important, the more we learn about and develop the science. No library on biophysics is complete without this text and its precursor, both available from Wiley-Scrivener.

Book Model Order Reduction for Stochastic Models of Biomolecular Systems with Time scale Separation

Download or read book Model Order Reduction for Stochastic Models of Biomolecular Systems with Time scale Separation written by Narmada Kumari Herath and published by . This book was released on 2018 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomolecular systems often involve reactions that take place on different time-scales, giving rise to 'slow' and 'fast' system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In deterministic systems, methods to obtain such reduced-order models are well defined by the singular perturbation or averaging techniques. However, model reduction of stochastic systems remains an ongoing area of research. In particular, existing model reduction methods for stochastic models of biomolecular systems lack rigorous error quantifications between the full and reduced dynamics. Furthermore, they only provide approximations for the slow variable dynamics, making the application of such methods to biomolecular systems difficult since the variables of interest are typically mixed (i.e., they encompass both fast and slow variables). In this thesis, we consider biomolecular systems modeled using the chemical Langevin equation (CLE) and the Linear Noise Approximation (LNA). Specifically, we consider biomolecular systems with linear propensity functions modeled by the CLE and systems with arbitrary propensity functions modeled by the LNA. For these systems, we obtain reduced-order models that approximate both the slow and fast variables under time-scale separation conditions. In particular, with suitable assumptions, we prove that the moments of the reduced-order models converge to those of the full systems as the time-scale separation becomes large. Our results further provide a rigorous justification for the accuracy of the stochastic total quasi-steady state approximation (tQSSA). We then consider two applications of these reduced-order models. In the first application, we analyze the trade-offs between modularity and signal noise in biomolecular networks. In the second application, we consider the application of the reduced-order LNA developed in this work to obtain reduced-order stochastic models for gene-regulatory networks.

Book Coarse Graining of Condensed Phase and Biomolecular Systems

Download or read book Coarse Graining of Condensed Phase and Biomolecular Systems written by Gregory A. Voth and published by CRC Press. This book was released on 2008-09-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring recent developments in the field, Coarse-Graining of Condensed Phase and Biomolecular Systems examines systematic ways of constructing coarse-grained representations for complex systems. It explains how this approach can be used in the simulation and modeling of condensed phase and biomolecular systems. Assembling some of the most influential, world-renowned researchers in the field, this book covers the latest developments in the coarse-grained molecular dynamics simulation and modeling of condensed phase and biomolecular systems. Each chapter focuses on specific examples of evolving coarse-graining methodologies and presents results for a variety of complex systems. The contributors discuss the minimalist, inversion, and multiscale approaches to coarse-graining, along with the emerging challenges of coarse-graining. They also connect atomic-level information with new coarse-grained representations of complex systems, such as lipid bilayers, proteins, peptides, and DNA.

Book IUTAM Symposium on Nonlinear Stochastic Dynamics

Download or read book IUTAM Symposium on Nonlinear Stochastic Dynamics written by N. Sri Namachchivaya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.

Book Amber 2022

    Book Details:
  • Author : David A. Case
  • Publisher : University of California, San Francisco
  • Release : 2022-04-28
  • ISBN :
  • Pages : 998 pages

Download or read book Amber 2022 written by David A. Case and published by University of California, San Francisco. This book was released on 2022-04-28 with total page 998 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amber is the collective name for a suite of programs that allow users to carry out molecular dynamics simulations, particularly on biomolecules. None of the individual programs carries this name, but the various parts work reasonably well together, and provide a powerful framework for many common calculations. The term Amber is also used to refer to the empirical force fields that are implemented here. It should be recognized, however, that the code and force field are separate: several other computer packages have implemented the Amber force fields, and other force fields can be implemented with the Amber programs. Further, the force fields are in the public domain, whereas the codes are distributed under a license agreement. The Amber software suite is divided into two parts: AmberTools22, a collection of freely available programs mostly under the GPL license, and Amber22, which is centered around the pmemd simulation program, and which continues to be licensed as before, under a more restrictive license. Amber22 represents a significant change from the most recent previous version, Amber20. (We have moved to numbering Amber releases by the last two digits of the calendar year, so there are no odd-numbered versions.) Please see https://ambermd.org for an overview of the most important changes. AmberTools is a set of programs for biomolecular simulation and analysis. They are designed to work well with each other, and with the “regular” Amber suite of programs. You can perform many simulation tasks with AmberTools, and you can do more extensive simulations with the combination of AmberTools and Amber itself. Most components of AmberTools are released under the GNU General Public License (GPL). A few components are in the public domain or have other open-source licenses. See the README file for more information.

Book Innovations in Biomolecular Modeling and Simulations

Download or read book Innovations in Biomolecular Modeling and Simulations written by Tamar Schlick and published by Royal Society of Chemistry. This book was released on 2012-05-24 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chemical and biological sciences face unprecedented opportunities in the 21st century. A confluence of factors from parallel universes - advances in experimental techniques in biomolecular structure determination, progress in theoretical modeling and simulation for large biological systems, and breakthroughs in computer technology - has opened new avenues of opportunity as never before. Now, experimental data can be interpreted and further analysed by modeling, and predictions from any approach can be tested and advanced through companion methodologies and technologies. This two volume set describes innovations in biomolecular modeling and simulation, in both the algorithmic and application fronts. With contributions from experts in the field, the books describe progress and innovation in areas including: simulation algorithms for dynamics and enhanced configurational sampling, force field development, implicit solvation models, coarse-grained models, quantum-mechanical simulations, protein folding, DNA polymerase mechanisms, nucleic acid complexes and simulations, RNA structure analysis and design and other important topics in structural biology modeling. The books are aimed at graduate students and experts in structural biology and chemistry and the emphasis is on reporting innovative new approaches rather than providing comprehensive reviews on each subject.