EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation and Inference for Stochastic Processes with YUIMA

Download or read book Simulation and Inference for Stochastic Processes with YUIMA written by Stefano M. Iacus and published by Springer. This book was released on 2018-06-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.

Book L  vy Processes and Stochastic Calculus

Download or read book L vy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Book Stochastic Partial Differential Equations with L  vy Noise

Download or read book Stochastic Partial Differential Equations with L vy Noise written by S. Peszat and published by Cambridge University Press. This book was released on 2007-10-11 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive monograph by two leading international experts; includes applications to statistical and fluid mechanics and to finance.

Book Stochastic Flows and Stochastic Differential Equations

Download or read book Stochastic Flows and Stochastic Differential Equations written by Hiroshi Kunita and published by Cambridge University Press. This book was released on 1990 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.

Book L  vy Processes in Lie Groups

Download or read book L vy Processes in Lie Groups written by Ming Liao and published by Cambridge University Press. This book was released on 2004-05-10 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Up-to-the minute research on important stochastic processes.

Book Malliavin Calculus for L  vy Processes with Applications to Finance

Download or read book Malliavin Calculus for L vy Processes with Applications to Finance written by Giulia Di Nunno and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Malliavin calculus as a generalization of the classical non-anticipating Ito calculus to an anticipating setting. It presents the development of the theory and its use in new fields of application.

Book Differential Equations Driven by Rough Paths

Download or read book Differential Equations Driven by Rough Paths written by Terry J. Lyons and published by Springer. This book was released on 2007-04-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each year young mathematicians congregate in Saint Flour, France, and listen to extended lecture courses on new topics in Probability Theory. The goal of these notes, representing a course given by Terry Lyons in 2004, is to provide a straightforward and self supporting but minimalist account of the key results forming the foundation of the theory of rough paths.

Book An Introduction to Stochastic Differential Equations

Download or read book An Introduction to Stochastic Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2012-12-11 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).

Book Recent Development In Stochastic Dynamics And Stochastic Analysis

Download or read book Recent Development In Stochastic Dynamics And Stochastic Analysis written by Jinqiao Duan and published by World Scientific. This book was released on 2010-02-08 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.

Book S  minaire de Probabilit  s XXXVIII

Download or read book S minaire de Probabilit s XXXVIII written by Michel Émery and published by Springer Science & Business Media. This book was released on 2004-12-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides a series of six articles on Lévy processes, Volume 38 of the Séminaire de Probabilités contains contributions whose topics range from analysis of semi-groups to free probability, via martingale theory, Wiener space and Brownian motion, Gaussian processes and matrices, diffusions and their applications to PDEs. As do all previous volumes of this series, it provides an overview on the current state of the art in the research on stochastic processes.

Book Statistical Methods for Stochastic Differential Equations

Download or read book Statistical Methods for Stochastic Differential Equations written by Mathieu Kessler and published by CRC Press. This book was released on 2012-05-17 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to th

Book Brownian Motion

    Book Details:
  • Author : René L. Schilling
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2014-06-18
  • ISBN : 3110307308
  • Pages : 424 pages

Download or read book Brownian Motion written by René L. Schilling and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-06-18 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.

Book Numerical Solution of Stochastic Differential Equations

Download or read book Numerical Solution of Stochastic Differential Equations written by Peter E. Kloeden and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Book Mathematics of the Bond Market

Download or read book Mathematics of the Bond Market written by Michał Barski and published by Cambridge University Press. This book was released on 2020-04-23 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.

Book An Introduction to the Geometry of Stochastic Flows

Download or read book An Introduction to the Geometry of Stochastic Flows written by Fabrice Baudoin and published by World Scientific. This book was released on 2004 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a self-contained introduction to the local geometry of the stochastic flows associated with stochastic differential equations. It stresses the view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry whose main tools are introduced throughout the text. By using the connection between stochastic flows and partial differential equations, we apply this point of view of the study of hypoelliptic operators written in Hormander's form.

Book White Noise Analysis And Quantum Information

Download or read book White Noise Analysis And Quantum Information written by Luigi Accardi and published by World Scientific. This book was released on 2017-08-29 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.

Book An Introduction to Sparse Stochastic Processes

Download or read book An Introduction to Sparse Stochastic Processes written by Michael Unser and published by Cambridge University Press. This book was released on 2014-08-21 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed guide to sparsity, providing a description of their transform-domain statistics and applying the models to practical algorithms.