Download or read book Nonstandard Methods in Stochastic Analysis and Mathematical Physics written by Sergio Albeverio and published by Courier Dover Publications. This book was released on 2009-02-26 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.
Download or read book Stochastic Analysis and Mathematical Physics written by A.B. Cruzeiro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents the outgrowth of an ongoing workshop on stochastic analysis held in Lisbon. The nine survey articles in the volume extend concepts from classical probability and stochastic processes to a number of areas of mathematical physics. It is a good reference text for researchers and advanced students in the fields of probability, stochastic processes, analysis, geometry, mathematical physics, and physics. Key topics covered include: nonlinear stochastic wave equations, completely positive maps, Mehler-type semigroups on Hilbert spaces, entropic projections, and many others.
Download or read book Stochastic Analysis and Mathematical Physics II written by Rolando Rebolledo and published by Birkhäuser. This book was released on 2012-12-06 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seminar on Stochastic Analysis and Mathematical Physics of the Ca tholic University of Chile, started in Santiago in 1984, has being followed and enlarged since 1995 by a series of international workshops aimed at pro moting a wide-spectrum dialogue between experts on the fields of classical and quantum stochastic analysis, mathematical physics, and physics. This volume collects most of the contributions to the Fourth Interna tional Workshop on Stochastic Analysis and Mathematical Physics (whose Spanish abbreviation is "ANESTOC"; in English, "STAMP"), held in San tiago, Chile, from January 5 to 11, 2000. The workshop style stimulated a vivid exchange of ideas which finally led to a number of written con tributions which I am glad to introduce here. However, we are currently submitted to a sort of invasion of proceedings books, and we do not want to increase our own shelves with a new one of the like. On the other hand, the editors of conference proceedings have to use different exhausting and com pulsive strategies to persuade authors to write and provide texts in time, a task which terrifies us. As a result, this volume is aimed at smoothly start ing a new kind of publication. What we would like to have is a collection of books organized like our seminar.
Download or read book Global and Stochastic Analysis with Applications to Mathematical Physics written by Yuri E. Gliklikh and published by Springer Science & Business Media. This book was released on 2010-12-07 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.
Download or read book Stochastic Numerics for Mathematical Physics written by Grigori N. Milstein and published by Springer Nature. This book was released on 2021-12-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.
Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Download or read book Stochastic Processes for Physicists written by Kurt Jacobs and published by Cambridge University Press. This book was released on 2010-02-18 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.
Download or read book Introduction to Infinite Dimensional Stochastic Analysis written by Zhi-yuan Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).
Download or read book Applied Stochastic Analysis written by Weinan E and published by American Mathematical Soc.. This book was released on 2021-09-22 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
Download or read book Stochastic Analysis in Mathematical Physics written by Gerard Ben Arous and published by World Scientific. This book was released on 2008 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideas and principles of stochastic analysis have managed to penetrate into various fields of pure and applied mathematics in the last 15 years; it is particularly true for mathematical physics. This volume provides a wide range of applications of stochastic analysis in fields as varied as statistical mechanics, hydrodynamics, Yang-Mills theory and spin-glass theory.The proper concept of stochastic dynamics relevant to each type of application is described in detail here. Altogether, these approaches illustrate the reasons why their dissemination in other fields is likely to accelerate in the years to come.
Download or read book Introduction to Stochastic Analysis written by Vigirdas Mackevicius and published by John Wiley & Sons. This book was released on 2013-02-07 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.
Download or read book Stochastic Analysis written by Hiroyuki Matsumoto and published by Cambridge University Press. This book was released on 2017 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing the Itô calculus and Malliavin calculus in tandem, this book crystallizes modern day stochastic analysis into a single volume.
Download or read book Stochastic Calculus and Differential Equations for Physics and Finance written by Joseph L. McCauley and published by Cambridge University Press. This book was released on 2013-02-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes.
Download or read book Mathematical Physics and Stochastic Analysis written by Sergio Albeverio and published by World Scientific. This book was released on 2000 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: In October 1998 a conference was held in Lisbon to celebrate Ludwig Streit's 60th birthday. This book collects some of the papers presented at the conference as well as other essays contributed by the many friends and collaborators who wanted to honor Ludwig Streit's scientific career and personality.The contributions cover many aspects of contemporary mathematical physics. Of particular importance are new results on infinite-dimensional stochastic analysis and its applications to a wide range of physical domains.List of Contributors: S Albeverio, T Hida, L Accardi, I Ya Aref'eva, I V Volovich; A Daletskii, Y Kondratiev, W Karwowski, N Asai, I Kubo, H-H Kuo, J Beckers, Ph Blanchard, G F Dell'Antonio, D Gandolfo, M Sirugue-Collin, A Bohm, H Kaldass, D Boll, G Jongen, G M Shim, J Bornales, C C Bernido, M V Carpio-Bernido, G Burdet, Ph Combe, H Nencka, P Cartier, C DeWitt-Morette, H Ezawa, K Nakamura, K Watanabe, Y Yamanaka, R Figari, F Gesztesy, H Holden, R Gielerak, G A Goldin, Z Haba, M-O Hongler, Y Hu, B Oksendal, A Sulem, J R Klauder, C B Lang, V I Man'ko, H Ouerdiane, J Potthoff, E Smajlovic, M Rckner, E Scacciatelli, J L Silva, J Stochel, F H Szafraniec, L V zquez, D N Kozakevich, S Jimnez, V R Vieira, P D Sacramento, R Vilela Mendes, D Voln?, P Samek.
Download or read book Stochastic Analysis and Mathematical Physics SAMP ANESTOC 2002 written by Richard Phillips Feynman and published by World Scientific. This book was released on 2004 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book collects a series of papers centered on two main streams: Feynman path integral approach to Quantum Mechanics and statistical mechanics of quantum open systems. Key authors discuss the state-of-the-art within their fields of expertise. In addition, the volume includes a number of contributed papers with new results, which have been thoroughly refereed. The contributions in this volume highlight emergent research in the area of stochastic analysis and mathematical physics, focusing, in particular on Feynman functional integral approach and, on the other hand, in quantum probability. The book is addressed to an audience of mathematical physicists, as well as specialists in probability theory, stochastic analysis and operator algebras. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
Download or read book Stochastic Processes in Mathematical Physics and Engineering written by Richard Ernest Bellman and published by American Mathematical Soc.. This book was released on 1964-12-31 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Stochastic Analysis on Manifolds written by Elton P. Hsu and published by American Mathematical Soc.. This book was released on 2002 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mainly from the perspective of a probabilist, Hsu shows how stochastic analysis and differential geometry can work together for their mutual benefit. He writes for researchers and advanced graduate students with a firm foundation in basic euclidean stochastic analysis, and differential geometry. He does not include the exercises usual to such texts, but does provide proofs throughout that invite readers to test their understanding. Annotation copyrighted by Book News Inc., Portland, OR.