EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Absorption Based Post Combustion Capture of Carbon Dioxide

Download or read book Absorption Based Post Combustion Capture of Carbon Dioxide written by Paul Feron and published by Woodhead Publishing. This book was released on 2016-05-27 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. - Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes - Editors and contributors are well known experts in the field - Presents the first book on this specific topic

Book Ultra Supercritical Coal Power Plants

Download or read book Ultra Supercritical Coal Power Plants written by Dongke Zhang FTSE and published by Elsevier. This book was released on 2013-08-31 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continued use of coal as a means of generating electricity and an increasing demand for cleaner, more efficient energy production has led to advances in power plant technology. Ultra-supercritical coal power plants reviews the engineering, operation, materials and performance of ultra-supercritical coal power plants.Following a chapter introducing advanced and ultra-supercritical coal power plants, part one goes on to explore the operating environments, materials and engineering of ultra-supercritical coal power plants. Chapters discuss the impacts of steam conditions on plant materials and operation, fuel considerations and burner design, and materials and design for boilers working under supercritical steam conditions. Chapters in part two focus on improving ultra-supercritical coal power plant performance and operability. Ash fouling, deposition and slagging in ultra-supercritical coal power plants are highlighted along with pollution control measures and the estimation, management and extension of the life of ultra-supercritical power plants. Further chapters provide an economic and engineering analysis of a 700°C advanced ultra-supercritical pulverised coal power plant and discuss CO2 capture-ready ultra-supercritical coal power plants.Ultra-supercritical coal power plants is a comprehensive technical reference for power plant operators and engineers, high-temperature materials scientists, professionals in the power industry who require an understanding of ultra-supercritical coal power plants and researchers and academics interested in the field. - Provides a comprehensive reference on the developments, materials, design and operation of ultra-supercritical power plant - Considers the degradation issues affecting this type of plant, as well as emissions control and CO2 capture technology; improved plant controls critical to improved operation and environmental performance - Contains operational assessments for plant safety, plant life management, and plant economics

Book Using Auxiliary Gas Power for Carbon Capture and Storage Energy Needs in Retrofitted Coal Power Plants

Download or read book Using Auxiliary Gas Power for Carbon Capture and Storage Energy Needs in Retrofitted Coal Power Plants written by Sarah Omer Bashadi and published by . This book was released on 2010 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90% capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery steam generator (HRSG), gas turbine with HRSG and back pressure steam turbine, and natural gas boiler with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus Process Evaluator, and the capital cost of the external GT plants are estimated using the Thermoflow Plant Engineering and Cost Estimator. The gas turbine options are found to lead to electricity costs similar to integration, but their performance is highly sensitive to the price of natural gas and the economic impact of integration. Using a GT with a HRSG only has a lower capital cost but generates less excess electricity than the GT with HRSG and back pressure steam turbine. In order to generate enough steam for the reboiler, a significant amount of excess power was produced using both gas turbine configurations. This excess power could be attractive for coal plants located in regions with increasing electricity demand. An alternate capture plant scenario where a greater demand for power exists relative to steam is also considered. The economics of using auxiliary plant power improve slightly under this alternate energy profile scenario, but the most important factors affecting desirability of the auxiliary plant retrofit remain the cost of natural gas, the full cost of integration, and the potential for sale of excess electricity.

Book Computational Optimization of Design and Variable Operation of CO2 capture enabled Coal natural Gas Power Plants

Download or read book Computational Optimization of Design and Variable Operation of CO2 capture enabled Coal natural Gas Power Plants written by Charles A. Kang and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate change mitigation will require large reductions in CO2 emissions from electricity production. Some of these cuts will come from increased use of renewable energy resources, but it is likely that thermal power plants will be used for an extended period of time to maintain grid stability and accommodate seasonal variability in renewable generation. Therefore, thermal power plants with CO2 capture and storage (CCS) capability may coexist with renewable generation to provide reliable low-carbon electricity. Moreover, CCS-enabled facilities designed for constant operations are not necessarily optimal under the conditions that are likely to occur with increased renewable penetration. There is therefore a need to devise optimal designs and operating plans for flexible thermal power stations equipped with CCS. In this work, computational optimization is used to determine the design and operating plan of a coal-natural gas power station with CO2 capture, under a CO2 emission performance standard. The facility consists of a coal power plant undergoing a retrofit with solvent-based post-combustion CO2 capture. The heat for CO2 capture solvent regeneration is provided by a combined cycle gas turbine (CCGT) designed for combined-heat-and-power service. Variable facility operations are represented by discrete operating modes dispatched using the electricity price-duration curve. Two problem formulations are considered. In the `simplified-capture' problem formulation, the CO2 capture system is represented using a single variable for capacity, while heat integration (including a detailed treatment of the heat recovery steam generator component of the CCGT) is optimized jointly with variable operations. In the `full-system' problem formulation, the detailed design of the CO2 capture system is optimized alongside a full treatment of heat integration and variable operations. To accomplish this, a computationally efficient proxy model of the CO2 capture system is developed that reproduces the behavior of a full-physics Aspen Plus model. Both problem formulations are incorporated in a bi-objective mixed-integer nonlinear program in which total capital requirement (TCR) is minimized and net present value (NPV) is maximized. Pareto frontiers are generated for six scenarios constructed from recent historical data from West Texas, the United Kingdom, and India. All six scenarios are considered using the simplified-capture problem formulation. The West Texas base scenario and the India scenario, which differ greatly from each other, are considered using the full-system problem formulation as well. Results between the two formulations are quite consistent and show that hourly electricity price variability and the choice of objective function can have a large effect on optimal design and planned operations. In the West Texas base scenario, which has high price variability, the maximum NPV facility in the full-system formulation (NPV of $201 million, TCR of $510 million) has a time-varying operating plan in which the CO2 capture system has a utilization factor of 66% (out of a maximum of 85%). In this scenario the minimum TCR facility (NPV of $101 million, TCR of $333 million) has a constant operating profile. In contrast, low price variability in the India scenario results in constant operations regardless of objective. Two advanced CO2 capture processes -- the mixed salt and piperazine processes -- are considered using the simplified-capture formulation for the West Texas base scenario. The advanced processes are shown to outperform the standard monoethanolamine (MEA) process, with the mixed salt process outperforming the MEA process by 16% for maximum NPV and 14% for minimum TCR. The full-system formulation using the MEA process provides generally similar results to those from the simplified-capture formulation in both the India and West Texas base scenarios. However, the inclusion of the detailed design of the CO2 capture process in the full-system problem formulation provides valuable design information, such as the effect of the integer nature of the number of CO2 capture trains. Taken in total, the results of this study highlight the value of applying computational optimization to consider integrated plant design and variable operations together.

Book Post Combustion CO2 Capture  Energetic Evaluation of Chemical Absorption Processes in Coal Fired Steam Power Plants

Download or read book Post Combustion CO2 Capture Energetic Evaluation of Chemical Absorption Processes in Coal Fired Steam Power Plants written by Jochen Oexmann and published by Cuvillier Verlag. This book was released on 2011-01-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, a semi-empirical column model is developed to represent absorber and desorber columns of post-combustion CO2 capture processes in coal-fired steam power plants. The chemical solvents are represented by empirical correlations on the basis of fundamental measurement data (CO2 solubility, heat capacity, density). The model of a CO2 capture process including the column model is coupled to detailed models of a hard-coal-fired steam power plant and of a CO2 compressor to evaluate and compare the impact of CO2 capture using six different solvents on the overall power plant process.

Book Boilers and Burners

Download or read book Boilers and Burners written by Prabir Basu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: A joint effort of three continents, this book is about rational utilization of the fossil fuels for generation of heat or power. It provides a synthesis of two scientific traditions: the high-performance, but often proprietary, Western designs, and the elaborate national standards based on less advanced Eastern designs; it presents both in the same Western format. It is intended for engineers and advanced undergraduate and graduate students with an interest in steam power plants, burners, or furnaces. The text uses a format of practice based on theory: each chapter begins with an explanation of a process, with basic theory developed from first principles; then empirical relationships are presented and, finally, design methods are explained by worked out examples. It will thus provide researchers with a resource for applications of theory to practice. Plant operators will find solutions to and explanations of many of their daily operational problems. Designers will find this book ready with required data, design methods and equations. Finally, consultants will find it very useful for design evaluation.

Book Fundamentals and Applications of Supercritical Carbon Dioxide  SCO2  Based Power Cycles

Download or read book Fundamentals and Applications of Supercritical Carbon Dioxide SCO2 Based Power Cycles written by Klaus Brun and published by Woodhead Publishing. This book was released on 2017-01-09 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. - Represents the first book to focus exclusively on SC02 power cycles - Contains detailed coverage of cycle fundamentals, key components, and design challenges - Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion

Book Capture ready Power Plants

Download or read book Capture ready Power Plants written by Mark C. Bohm and published by . This book was released on 2006 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) Higher (above $40) or lower (below $7) initial tax rates do not result in significant differences in lifetime CO2 emissions from these plants. Little difference is seen in the lifetime CO2 emissions between the IGCC plants with and without pre-investment for CO2 capture.

Book Engineering Solutions for CO2 Conversion

Download or read book Engineering Solutions for CO2 Conversion written by Tomas Ramirez Reina and published by John Wiley & Sons. This book was released on 2021-07-19 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. "Engineering Solutions for CO2 Conversion" offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. "Engineering Solutions for CO2 Conversion" explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: * Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels * Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies * Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization * Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, "Engineering Solutions for CO2 Conversion" provides the most current and expert information on the many aspects and challenges of CO2 conversion.

Book Carbon Capture Technologies for Gas Turbine Based Power Plants

Download or read book Carbon Capture Technologies for Gas Turbine Based Power Plants written by Hamidreza Gohari Darabkhani and published by Elsevier. This book was released on 2022-09-15 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Capture Technologies for Gas-Turbine-Based Power Plants explores current progress in one of the most capable technologies for carbon capture in gas-fired power plants. It identifies key benefits and drawbacks of oxyfuel combustion capture compared to other capture techniques, reviews their thermodynamics and processes modelling, and explores the technoeconomic evaluation of these cycles in detail. The book examines more than 20 different oxy-turbine cycles, identifying the main parameters regarding their operation, technology readiness level and development. It also analyses the use of advanced natural gas (NG) combustion cycles from the perspective of carbon capture and storage (CCS) technoeconomic aspects. Major oxy-turbine cycles at the most advanced stages of development are assessed by way of Political, Environmental, Social, Technological, Legislative and Economic (PESTLE) risk analysis. They are then compared with a conventional combined cycle gas turbine (CCGT) power plants with and without post-combustion carbon capture as the base-case scenario. The book concludes with a road map for development of future gas turbine-based power plants with full carbon capture capabilities.

Book CO2 Capture by Reactive Absorption Stripping

Download or read book CO2 Capture by Reactive Absorption Stripping written by Claudio Madeddu and published by Springer. This book was released on 2018-12-15 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on modelling issues and their implications for the correct design of reactive absorption–desorption systems. In addition, it addresses the case of carbon dioxide (CO2) post-combustion capture in detail. The book proposes a new perspective on these systems, and provides technological solutions with comparisons to previous treatments of the subject. The model that is proposed is subsequently validated using experimental data. In addition, the book features graphs to guide readers with immediate visualizations of the benefits of the methodology proposed. It shows a systematic procedure for the steady-state model-based design of a CO2 post-combustion capture plant that employs reactive absorption-stripping, using monoethanolamine as the solvent. It also discusses the minimization of energy consumption, both through the modification of the plant flowsheet and the set-up of the operating parameters. The book offers a unique source of information for researchers and practitioners alike, as it also includes an economic analysis of the complete plant. Further, it will be of interest to all academics and students whose work involves reactive absorption-stripping design and the modelling of reactive absorption-stripping systems.

Book Advances in Carbon Capture

    Book Details:
  • Author : Mohammad Reza Rahimpour
  • Publisher : Woodhead Publishing
  • Release : 2020-08-04
  • ISBN : 0128227583
  • Pages : 574 pages

Download or read book Advances in Carbon Capture written by Mohammad Reza Rahimpour and published by Woodhead Publishing. This book was released on 2020-08-04 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Carbon Capture reviews major implementations of CO2 capture, including absorption, adsorption, permeation and biological techniques. For each approach, key benefits and drawbacks of separation methods and technologies, perspectives on CO2 reuse and conversion, and pathways for future CO2 capture research are explored in depth. The work presents a comprehensive comparison of capture technologies. In addition, the alternatives for CO2 separation from various feeds are investigated based on process economics, flexibility, industrial aspects, purification level and environmental viewpoints. - Explores key CO2 separation and compare technologies in terms of provable advantages and limitations - Analyzes all critical CO2 capture methods in tandem with related technologies - Introduces a panorama of various applications of CO2 capture

Book CCS Guidelines

Download or read book CCS Guidelines written by Sarah M. Forbes and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Carbon Dioxide Capture and Storage (CCS) Guidelines effort was initiated to develop a set of preliminary guidelines and recommendations for the deployment of CCS technologies in the United States, to ensure that CCS projects are conducted safely and effectively. The guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policy makers. These guidelines are intended to guide full-scale demonstration of and build public confidence in CCS technologies by informing how projects should be conducted.

Book Carbon Capture and Storage

Download or read book Carbon Capture and Storage written by Mai Bui and published by Royal Society of Chemistry. This book was released on 2019-11-29 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will provide the latest global perspective on the role and value of carbon capture and storage (CCS) in delivering temperature targets and reducing the impact of global warming. As well as providing a comprehensive, up-to-date overview of the major sources of carbon dioxide emission and negative emissions technologies, the book also discusses technical, economic and political issues associated with CCS along with strategies to enable commercialisation.

Book Conversion of Coal Fired Power Plants to Cogeneration and Combined Cycle

Download or read book Conversion of Coal Fired Power Plants to Cogeneration and Combined Cycle written by Ryszard Bartnik and published by Springer Science & Business Media. This book was released on 2011-07-28 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. The authors analyze the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle is an informative monograph written for researchers, postgraduate students and policy makers in power engineering.

Book Coal fired Open cycle Liquid metal Magnetohydrodynamic Topping Cycle for Retrofit of Steam Power Plants   Two phase Working Fluid Composed of Coal Combustion Products and Liquid Copper

Download or read book Coal fired Open cycle Liquid metal Magnetohydrodynamic Topping Cycle for Retrofit of Steam Power Plants Two phase Working Fluid Composed of Coal Combustion Products and Liquid Copper written by and published by . This book was released on 1980 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the new plant efficiency and the cost benefit relative to other options, i.e., continuing to burn oil, a conventional retrofit to burn coal (if possible), and an over-the-fence gasifier for boilers that cannot burn coal directly. The OC-LMMHD cycle and the existing steam plant used in the study are discussed, and a detailed description of the retrofit plant is presented. The latter includes plant drawings, description of the coupling of the OC-LMMHD topping cycle and the steam boiler, drawings and descriptions of the major components in the retrofit plant, and costs. The unique capability of the OC-LMMHD cycle to control the pollutants normally associated with burning coal is discussed. The net plant output powers and efficiencies are calculated, with allowances for the required auxiliary powers and component inefficiencies, and a plant lifetime economic analysis performed by an architect/engineer. The efficiency and cost results are compared with the values for the other options.