EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical Modeling of MOSFETs and Interconnects for Deep submicron Technologies

Download or read book Statistical Modeling of MOSFETs and Interconnects for Deep submicron Technologies written by James Chieh-Tsung Chen and published by . This book was released on 1998 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hot Carrier Degradation in Semiconductor Devices

Download or read book Hot Carrier Degradation in Semiconductor Devices written by Tibor Grasser and published by Springer. This book was released on 2014-10-29 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2004 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Timing Performance of Nanometer Digital Circuits Under Process Variations

Download or read book Timing Performance of Nanometer Digital Circuits Under Process Variations written by Victor Champac and published by Springer. This book was released on 2018-04-18 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the digital design of integrated circuits under process variations, with a focus on design-time solutions. The authors describe a step-by-step methodology, going from logic gates to logic paths to the circuit level. Topics are presented in comprehensively, without overwhelming use of analytical formulations. Emphasis is placed on providing digital designers with understanding of the sources of process variations, their impact on circuit performance and tools for improving their designs to comply with product specifications. Various circuit-level “design hints” are highlighted, so that readers can use then to improve their designs. A special treatment is devoted to unique design issues and the impact of process variations on the performance of FinFET based circuits. This book enables readers to make optimal decisions at design time, toward more efficient circuits, with better yield and higher reliability.

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 2000 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Predictive Technology Model in the Late Silicon Era and Beyond

Download or read book The Predictive Technology Model in the Late Silicon Era and Beyond written by Yu Cao and published by Now Publishers Inc. This book was released on 2010 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aggressive scaling of CMOS technology has inevitably led to vastly increased power dissipation, process variability and reliability degradation, posing tremendous challenges to robust circuit design. To continue the success of integrated circuits, advanced design research must start in parallel with or even ahead of technology development. This new paradigm requires the Predictive Technology Model (PTM) for future technology generations, including nanoscale CMOS and post-silicon devices. This paper presents a comprehensive set of predictive modeling developments. Starting from the PTM of traditional CMOS devices, it extends to CMOS alternatives at the end of the silicon roadmap, such as strained Si, high-k/metal gate, and FinFET devices. The impact of process variation and the aging effect is further captured by modeling the device parameters under the influence. Beyond the silicon roadmap, the PTM outreaches to revolutionary devices, especially carbon-based transistor and interconnect, in order to support explorative design research. Overall, these predictive device models enable early stage design exploration with increasing technology diversity, helping shed light on the opportunities and challenges in the nanoelectronics era.

Book Technology Computer Aided Design

Download or read book Technology Computer Aided Design written by Chandan Kumar Sarkar and published by CRC Press. This book was released on 2018-09-03 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and TCAD software. Providing background concepts involved in the TCAD simulation of MOSFET devices, it presents concepts in a simplified manner, frequently using comparisons to everyday-life experiences. The book then explains concepts in depth, with required mathematics and program code. This book also details the classical semiconductor physics for understanding the principle of operations for VLSI MOS transistors, illustrates recent developments in the area of MOSFET and other electronic devices, and analyzes the evolution of the role of modeling and simulation of MOSFET. It also provides exposure to the two most commercially popular TCAD simulation tools Silvaco and Sentaurus. • Emphasizes the need for TCAD simulation to be included within VLSI design flow for nano-scale integrated circuits • Introduces the advantages of TCAD simulations for device and process technology characterization • Presents the fundamental physics and mathematics incorporated in the TCAD tools • Includes popular commercial TCAD simulation tools (Silvaco and Sentaurus) • Provides characterization of performances of VLSI MOSFETs through TCAD tools • Offers familiarization to compact modeling for VLSI circuit simulation R&D cost and time for electronic product development is drastically reduced by taking advantage of TCAD tools, making it indispensable for modern VLSI device technologies. They provide a means to characterize the MOS transistors and improve the VLSI circuit simulation procedure. The comprehensive information and systematic approach to design, characterization, fabrication, and computation of VLSI MOS transistor through TCAD tools presented in this book provides a thorough foundation for the development of models that simplify the design verification process and make it cost effective.

Book IEEE Circuits   Devices

Download or read book IEEE Circuits Devices written by and published by . This book was released on 2001 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High performance SOI Pseudo nMOS Circuit Design Techniques for the Deep Sub micron Era

Download or read book High performance SOI Pseudo nMOS Circuit Design Techniques for the Deep Sub micron Era written by Jayakumaran Sivagnaname and published by . This book was released on 2005 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reliability Physics and Engineering

Download or read book Reliability Physics and Engineering written by J. W. McPherson and published by Springer Science & Business Media. This book was released on 2010-08-05 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: All engineers could bene?t from at least one course in reliability physics and engineering. It is very likely that, starting with your very ?rst engineering po- tion, you will be asked — how long is your newly developed device expected to last? This text was designed to help you to answer this fundamentally important question. All materials and devices are expected to degrade with time, so it is very natural to ask — how long will the product last? The evidence for material/device degradation is apparently everywhere in nature. A fresh coating of paint on a house will eventually crack and peel. Doors in a new home can become stuck due to the shifting of the foundation. The new ?nish on an automobile will oxidize with time. The tight tolerances associated with ?nely meshed gears will deteriorate with time. Critical parameters associated with hi- precision semiconductor devices (threshold voltages, drive currents, interconnect resistances, capacitor leakages, etc.) will degrade with time. In order to und- stand the lifetime of the material/device, it is important to understand the reliability physics (kinetics) for each of the potential failure mechanisms and then be able to develop the required reliability engineering methods that can be used to prevent, or at least minimize the occurrence of, device failure.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2668 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrical   Electronics Abstracts

Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 2304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1994 with total page 1224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mosfet Modeling For Vlsi Simulation  Theory And Practice

Download or read book Mosfet Modeling For Vlsi Simulation Theory And Practice written by Narain Arora and published by World Scientific. This book was released on 2007-02-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations.The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.

Book Science Abstracts

Download or read book Science Abstracts written by and published by . This book was released on 1995 with total page 1990 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscaled Semiconductor on Insulator Structures and Devices

Download or read book Nanoscaled Semiconductor on Insulator Structures and Devices written by S. Hall and published by Springer. This book was released on 2007-09-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers combined views on silicon-on-insulator (SOI) nanoscaled electronics from experts in the fields of materials science, device physics, electrical characterization and computer simulation. Coverage analyzes prospects of SOI nanoelectronics beyond Moore’s law and explains fundamental limits for CMOS, SOICMOS and single electron technologies.