EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistics for High Dimensional Data

Download or read book Statistics for High Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Book High Dimensional Statistics

Download or read book High Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

Book Statistical Analysis for High Dimensional Data

Download or read book Statistical Analysis for High Dimensional Data written by Arnoldo Frigessi and published by Springer. This book was released on 2016-02-16 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Book Fundamentals of High Dimensional Statistics

Download or read book Fundamentals of High Dimensional Statistics written by Johannes Lederer and published by Springer Nature. This book was released on 2021-11-16 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.

Book Statistical Inference from High Dimensional Data

Download or read book Statistical Inference from High Dimensional Data written by Carlos Fernandez-Lozano and published by MDPI. This book was released on 2021-04-28 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Real-world problems can be high-dimensional, complex, and noisy • More data does not imply more information • Different approaches deal with the so-called curse of dimensionality to reduce irrelevant information • A process with multidimensional information is not necessarily easy to interpret nor process • In some real-world applications, the number of elements of a class is clearly lower than the other. The models tend to assume that the importance of the analysis belongs to the majority class and this is not usually the truth • The analysis of complex diseases such as cancer are focused on more-than-one dimensional omic data • The increasing amount of data thanks to the reduction of cost of the high-throughput experiments opens up a new era for integrative data-driven approaches • Entropy-based approaches are of interest to reduce the dimensionality of high-dimensional data

Book Introduction to High Dimensional Statistics

Download or read book Introduction to High Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

Book Partially Linear Models

    Book Details:
  • Author : Wolfgang Härdle
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642577008
  • Pages : 210 pages

Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.

Book High dimensional Data Analysis

Download or read book High dimensional Data Analysis written by Tony Cai;Xiaotong Shen and published by . This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.

Book Advances in Multivariate Statistical Methods

Download or read book Advances in Multivariate Statistical Methods written by Ashis Sengupta and published by World Scientific. This book was released on 2009 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printbegrænsninger: Der kan printes 10 sider ad gangen og max. 40 sider pr. session

Book Mathematical Foundations of Infinite Dimensional Statistical Models

Download or read book Mathematical Foundations of Infinite Dimensional Statistical Models written by Evarist Giné and published by Cambridge University Press. This book was released on 2021-03-25 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Statistical Foundations of Data Science

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Book High Dimensional Data Analysis with Low Dimensional Models

Download or read book High Dimensional Data Analysis with Low Dimensional Models written by John Wright and published by Cambridge University Press. This book was released on 2022-01-13 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Book Semiparametric Theory and Missing Data

Download or read book Semiparametric Theory and Missing Data written by Anastasios Tsiatis and published by Springer Science & Business Media. This book was released on 2007-01-15 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.

Book Trends and Perspectives in Linear Statistical Inference

Download or read book Trends and Perspectives in Linear Statistical Inference written by Müjgan Tez and published by Springer. This book was released on 2018-02-01 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.

Book Computer Age Statistical Inference

Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Book The Statistical Analysis of Categorical Data

Download or read book The Statistical Analysis of Categorical Data written by Erling B. Andersen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give an up to date account of the most commonly uses statist i cal models for categoriCal data. The emphasis is on the connection between theory and appIications to real data sets. The book only covers models for categorical data. Various n:t0dels for mixed continuous and categorical data are thus excluded. The book is written as a textbook, although many methods and results are quite recent. This should imply, that the book can be used for a graduate course in categorical data analysis. With this aim in mind chapters 3 to 12 are concluded with a set of exer eises. In many cases, the data sets are those data sets, which were not included in the examples of the book, although they at one point in time were regarded as potential can didates for an example. A certain amount of general knowledge of statistical theory is necessary to fully benefit from the book. A summary of the basic statistical concepts deemed necessary pre requisites is given in chapter 2. The mathematical level is only moderately high, but the account in chapter 3 of basic properties of exponential families and the parametric multinomial distribution is made as mathematical preeise as possible without going into mathematical details and leaving out most proofs.