Download or read book Statistical Data Analysis Explained written by Clemens Reimann and published by John Wiley & Sons. This book was released on 2011-08-31 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Download or read book Statistical Data Analysis Using SAS written by Mervyn G. Marasinghe and published by Springer. This book was released on 2018-04-12 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.
Download or read book Naked Statistics Stripping the Dread from the Data written by Charles Wheelan and published by W. W. Norton & Company. This book was released on 2013-01-07 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: A New York Times bestseller "Brilliant, funny…the best math teacher you never had." —San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called "sexy." From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more. For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions. And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.
Download or read book Statistical Data Analysis written by Glen Cowan and published by Oxford University Press. This book was released on 1998 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).
Download or read book Statistical Methods written by Rudolf J. Freund and published by Elsevier. This book was released on 2003-01-07 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Download or read book Introduction to Statistics and Data Analysis written by Christian Heumann and published by Springer Nature. This book was released on 2023-01-30 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Download or read book Longitudinal Data Analysis written by Garrett Fitzmaurice and published by CRC Press. This book was released on 2008-08-11 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Download or read book Using R for Data Management Statistical Analysis and Graphics written by Nicholas J. Horton and published by CRC Press. This book was released on 2010-07-28 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsUsing R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes
Download or read book An Introduction to Statistical Analysis in Research written by Kathleen F. Weaver and published by John Wiley & Sons. This book was released on 2017-09-05 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides well-organized coverage of statistical analysis and applications in biology, kinesiology, and physical anthropology with comprehensive insights into the techniques and interpretations of R, SPSS®, Excel®, and Numbers® output An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences develops a conceptual foundation in statistical analysis while providing readers with opportunities to practice these skills via research-based data sets in biology, kinesiology, and physical anthropology. Readers are provided with a detailed introduction and orientation to statistical analysis as well as practical examples to ensure a thorough understanding of the concepts and methodology. In addition, the book addresses not just the statistical concepts researchers should be familiar with, but also demonstrates their relevance to real-world research questions and how to perform them using easily available software packages including R, SPSS®, Excel®, and Numbers®. Specific emphasis is on the practical application of statistics in the biological and life sciences, while enhancing reader skills in identifying the research questions and testable hypotheses, determining the appropriate experimental methodology and statistical analyses, processing data, and reporting the research outcomes. In addition, this book: • Aims to develop readers’ skills including how to report research outcomes, determine the appropriate experimental methodology and statistical analysis, and identify the needed research questions and testable hypotheses • Includes pedagogical elements throughout that enhance the overall learning experience including case studies and tutorials, all in an effort to gain full comprehension of designing an experiment, considering biases and uncontrolled variables, analyzing data, and applying the appropriate statistical application with valid justification • Fills the gap between theoretically driven, mathematically heavy texts and introductory, step-by-step type books while preparing readers with the programming skills needed to carry out basic statistical tests, build support figures, and interpret the results • Provides a companion website that features related R, SPSS, Excel, and Numbers data sets, sample PowerPoint® lecture slides, end of the chapter review questions, software video tutorials that highlight basic statistical concepts, and a student workbook and instructor manual An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is also appropriate as a reference for researchers and professionals in the fields of anthropology, sports research, sports science, and physical education. KATHLEEN F. WEAVER, PhD, is Associate Dean of Learning, Innovation, and Teaching and Professor in the Department of Biology at the University of La Verne. The author of numerous journal articles, she received her PhD in Ecology and Evolutionary Biology from the University of Colorado. VANESSA C. MORALES, BS, is Assistant Director of the Academic Success Center at the University of La Verne. SARAH L. DUNN, PhD, is Associate Professor in the Department of Kinesiology at the University of La Verne and is Director of Research and Sponsored Programs. She has authored numerous journal articles and received her PhD in Health and Exercise Science from the University of New South Wales. KANYA GODDE, PhD, is Assistant Professor in the Department of Anthropology and is Director/Chair of Institutional Review Board at the University of La Verne. The author of numerous journal articles and a member of the American Statistical Association, she received her PhD in Anthropology from the University of Tennessee. PABLO F. WEAVER, PhD, is Instructor in the Department of Biology at the University of La Verne. The author of numerous journal articles, he received his PhD in Ecology and Evolutionary Biology from the University of Colorado.
Download or read book Secondary Analysis of Electronic Health Records written by MIT Critical Data and published by Springer. This book was released on 2016-09-09 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Download or read book The Statistical Analysis of Experimental Data written by John Mandel and published by Courier Corporation. This book was released on 2012-06-08 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables.
Download or read book Illustrating Statistical Procedures Finding Meaning in Quantitative Data written by Ray W. Cooksey and published by Springer Nature. This book was released on 2020-05-14 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book occupies a unique position in the field of statistical analysis in the behavioural and social sciences in that it targets learners who would benefit from learning more conceptually and less computationally about statistical procedures and the software packages that can be used to implement them. This book provides a comprehensive overview of this important research skill domain with an emphasis on visual support for learning and better understanding. The primary focus is on fundamental concepts, procedures and interpretations of statistical analyses within a single broad illustrative research context. The book covers a wide range of descriptive, correlational and inferential statistical procedures as well as more advanced procedures not typically covered in introductory and intermediate statistical texts. It is an ideal reference for postgraduate students as well as for researchers seeking to broaden their conceptual exposure to what is possible in statistical analysis.
Download or read book Statistical Methods for Meta Analysis written by Larry V. Hedges and published by Academic Press. This book was released on 2014-06-28 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to address the statistical issues for integrating independent studies. There exist a number of papers and books that discuss the mechanics of collecting, coding, and preparing data for a meta-analysis , and we do not deal with these. Because this book concerns methodology, the content necessarily is statistical, and at times mathematical. In order to make the material accessible to a wider audience, we have not provided proofs in the text. Where proofs are given, they are placed as commentary at the end of a chapter. These can be omitted at the discretion of the reader.Throughout the book we describe computational procedures whenever required. Many computations can be completed on a hand calculator, whereas some require the use of a standard statistical package such as SAS, SPSS, or BMD. Readers with experience using a statistical package or who conduct analyses such as multiple regression or analysis of variance should be able to carry out the analyses described with the aid of a statistical package.
Download or read book Data Analysis Methods in Physical Oceanography written by Richard E. Thomson and published by Elsevier. This book was released on 2001-04-03 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Download or read book SAS for Data Analysis written by Mervyn G. Marasinghe and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for use as the textbook in a second course in applied statistics that covers topics in multiple regression and analysis of variance at an intermediate level. Generally, students enrolled in such courses are p- marily graduate majors or advanced undergraduate students from a variety of disciplines. These students typically have taken an introductory-level s- tistical methods course that requires the use a software system such as SAS for performing statistical analysis. Thus students are expected to have an - derstanding of basic concepts of statistical inference such as estimation and hypothesis testing. Understandably, adequate time is not available in a ?rst course in stat- tical methods to cover the use of a software system adequately in the amount of time available for instruction. The aim of this book is to teach how to use the SAS system for data analysis. The SAS language is introduced at a level of sophistication not found in most introductory SAS books. Important features such as SAS data step programming, pointers, and line-hold spe- ?ers are described in detail. The powerful graphics support available in SAS is emphasized throughout, and many worked SAS program examples contain graphic components.