Download or read book Multiscale Paradigms in Integrated Computational Materials Science and Engineering written by Pierre Deymier and published by Springer. This book was released on 2015-11-25 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.
Download or read book Dynamics of One Dimensional Quantum Systems written by Yoshio Kuramoto and published by Cambridge University Press. This book was released on 2009-08-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and accessible account of the dynamical properties of one-dimensional quantum systems, for graduate students and new researchers.
Download or read book Strongly Correlated Systems written by Adolfo Avella and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Download or read book Air Force Research Resum s written by and published by . This book was released on with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book High Performance Computing in Science and Engineering 16 written by Wolfgang E. Nagel and published by Springer. This book was released on 2017-01-11 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
Download or read book Experimental Thermodynamics Volume X written by Dick Bedeaux and published by Royal Society of Chemistry. This book was released on 2016 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering recent developments in the theory of non-equilibrium thermodynamics and its applications, this title is aimed at a predominantly, but not exclusively, academic audience of practitioners of thermodynamics and energy conversion.
Download or read book Quantum Simulations Of Condensed Matter Phenomena International Workshop written by James E Gubernatis and published by World Scientific. This book was released on 1989-12-01 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this workshop is to present and exchange information on rapidly growing areas in physics and chemistry where quantum simulation techniques are being developed and applied to the study of a variety of condensed matter phenomena. These techniques include, but are not limited to zero and finite temperature many-electron Monte Carlo methods, quantum spin systems techniques, variational and Green's function Monte Carlo methods, exact diagonalization studies of small clusters, and studies of real-time quantum dynamics by path-integral and related approaches.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975 with total page 1212 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dynamics of Complex Quantum Systems written by Vladimir M. Akulin and published by Springer Science & Business Media. This book was released on 2013-12-30 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on other courses he has given over the last two decades.
Download or read book Coherent Dynamics of Complex Quantum Systems written by Vladimir M. Akulin and published by Springer Science & Business Media. This book was released on 2005-12-21 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coherent Dynamics of Complex Quantum Systems is aimed at senior-level undergraduate students in the areas of atomic, molecular, and laser physics, physical chemistry, quantum optics and quantum informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elaborated technique of the adjacent fields.
Download or read book Spin Polarized Quantum Systems written by S. Stringari and published by World Scientific Publishing Company. This book was released on 1989 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Nanophysics written by Klaus D. Sattler and published by CRC Press. This book was released on 2010-09-17 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances
Download or read book Molecular Dynamics written by Ruben Santamaria and published by Springer Nature. This book was released on 2024-01-20 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This molecular dynamics textbook takes the reader from classical mechanics to quantum mechanics and vice versa, and from few-body systems to many-body systems. It is self-contained, comprehensive, and builds the theory of molecular dynamics from basic principles to applications, allowing the subject to be appreciated by readers from physics, chemistry, and biology backgrounds while maintaining mathematical rigor. The book is enhanced with illustrations, problems and solutions, and suggested reading, making it ideal for undergraduate and graduate courses or self-study. With coverage of recent developments, the book is essential reading for students who explore and characterize phenomena at the atomic level. It is a useful reference for researchers in physics and chemistry, and can act as an entry point for researchers in nanoscience, materials engineering, genetics, and related fields who are seeking a deeper understanding of nature.
Download or read book Combining Quantum Mechanics and Molecular Mechanics Some Recent Progresses in QM MM Methods written by and published by Academic Press. This book was released on 2010-06-14 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. - Publishes articles, invited reviews and proceedings of major international conferences and workshops - Written by leading international researchers in quantum and theoretical chemistry - Highlights important interdisciplinary developments
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1987 with total page 1390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Download or read book Thin metal films on weakly interacting substrates written by Andreas Jamnig and published by Linköping University Electronic Press. This book was released on 2020-09-30 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vapor-based growth of thin metal films with controlled morphology on weakly-interacting substrates (WIS), including oxides and van der Waals materials, is essential for the fabrication of multifunctional metal contacts in a wide array of optoelectronic devices. Achieving this entails a great challenge, since weak film/substrate interactions yield a pronounced and uncontrolled 3D morphology. Moreover, the far-from-equilibrium nature of vapor-based film growth often leads to generation of mechanical stress, which may further compromise device reliability and functionality. The objectives of this thesis are related to metal film growth on WIS and seek to: (i) contribute to the understanding of atomic-scale processes that control film morphological evolution; (ii) elucidate the dynamic competition between nanoscale processes that govern film stress generation and evolution; and (iii) develop methodologies for manipulating and controlling nanoscale film morphology between 2D and 3D. Investigations focus on magnetron sputter-deposited Ag and Cu films on SiO2 and amorphous carbon (a-C) substrates. Research is conducted by strategically combining of in situ and real-time film growth monitoring, ex situ chemical and (micro)-structural analysis, optical modelling, and deterministic growth simulations. In the first part, the scaling behavior of characteristic morphological transition thicknesses (i.e., percolation and continuous film formation thickness) during growth of Ag and Cu films on a-C are established as function of deposition rate and temperature. These data are interpreted using a theoretical framework based on the droplet growth theory and the kinetic freezing model for island coalescence, from which the diffusion rates of film forming species during Ag and Cu growth are estimated. By combining experimental data with ab initio molecular dynamics simulations, diffusion of multiatomic clusters, rather than monomers, is identified as the rate-limiting structure-forming process. In the second part, the effect of minority metallic or gaseous species (Cu, N2, O2) on Ag film morphological evolution on SiO2 is studied. By employing in situ spectroscopic ellipsometry, it is found that addition of minority species at the film growth front promotes 2D morphology, but also yields an increased continuous-layer resistivity. Ex situ analyses show that 2D morphology is favored because minority species hinder the rate of coalescence completion. Hence, a novel growth manipulation strategy is compiled in which minority species are deployed with high temporal precision to selectively target specific film growth stages and achieve 2D morphology, while retaining opto-electronic properties of pure Ag films. In the third part, the evolution of stress during Ag and Cu film growth on a-C and its dependence on growth kinetics (as determined by deposition rate, substrate temperature) is systematically investigated. A general trend toward smaller compressive stress magnitudes with increasing temperature/deposition rate is found, related to increasing grain size/decreasing adatom diffusion length. Exception to this trend is found for Cu films, in which oxygen incorporation from the residual growth atmosphere at low deposition rates inhibits adatom diffusivity and decreases the magnitude of compressive stress. The effect of N2 on stress type and magnitude in Ag films is also studied. While Ag grown in N2-free atmosphere exhibits a typical compressive-tensile-compressive stress evolution as function of thickness, addition of a few percent of N2 yields to a stress turnaround from compressive to tensile stress after film continuity which is attributed to giant grain growth and film roughening. The overall results of the thesis provide the foundation to: (i) determine diffusion rates over a wide range of WIS film/substrates systems; (ii) design non-invasive strategies for multifunctional contacts in optoelectronic devices; (iii) complete important missing pieces in the fundamental understanding of stress, which can be used to expand theoretical descriptions for predicting and tuning stress magnitude. La morphologie de films minces métalliques polycristallins élaborés par condensation d’une phase vapeur sur des substrats à faible interaction (SFI) possède un caractère 3D intrinsèque. De plus, la nature hors équilibre de la croissance du film depuis une phase vapeur conduit souvent à la génération de contraintes mécaniques, ce qui peut compromettre davantage la fiabilité et la fonctionnalité des dispositifs optoélectroniques. Les objectifs de cette thèse sont liés à la croissance de films métalliques sur SFI et visent à: (i) contribuer à une meilleure compréhension des processus à l'échelle atomique qui contrôlent l'évolution morphologique des films; (ii) élucider les processus dynamiques qui régissent la génération et l'évolution des contraintes en cours de croissance; et (iii) développer des méthodologies pour manipuler et contrôler la morphologie des films à l'échelle nanométrique. L’originalité de l’approche mise en œuvre consiste à suivre la croissance des films in situ et en temps réel par couplage de plusieurs diagnostics, complété par des analyses microstructurales ex situ. Les grandeurs mesurées sont confrontées à des modèles optiques et des simulations atomistiques. La première partie est consacrée à une étude de comportement d’échelonnement des épaisseurs de transition morphologiques caractéristiques, à savoir la percolation et la continuité du film, lors de la croissance de films polycristallins d'Ag et de Cu sur carbone amorphe (a-C). Ces grandeurs sont examinées de façon systématique en fonction de la vitesse de dépôt et de la température du substrat, et interprétées dans le cadre de la théorie de la croissance de gouttelettes suivant un modèle cinétique décrivant la coalescence d’îlots, à partir duquel les coefficients de diffusion des espèces métalliques sont estimés. En confrontant les données expérimentales à des simulations par dynamique moléculaire ab initio, la diffusion de clusters multiatomiques est identifiée comme l’étape limitante le processus de croissance. Dans la seconde partie, l’incorporation, et l’impact sur la morphologie, d’espèces métalliques ou gazeuses minoritaires (Cu, N2, O2) lors de la croissance de film Ag sur SiO2 est étudié. A partir de mesures ellipsométriques in situ, on constate que l'addition d'espèces minoritaires favorise une morphologie 2D, entravant le taux d'achèvement de la coalescence, mais donne également une résistivité accrue de la couche continue. Par conséquent, une stratégie de manipulation de la croissance est proposée dans laquelle des espèces minoritaires sont déployées avec une grande précision temporelle pour cibler sélectivement des stades de croissance de film spécifiques et obtenir une morphologie 2D, tout en conservant les propriétés optoélectroniques des films d’Ag pur. Dans la troisième partie, l'évolution des contraintes résiduelles lors de la croissance des films d'Ag et de Cu sur a-C et leur dépendance à la cinétique de croissance est systématiquement étudiée. On observe une tendance générale vers des amplitudes de contrainte de compression plus faibles avec une augmentation de la température/vitesse de dépôt, liée à l'augmentation de la taille des grains/à la diminution de la longueur de diffusion des adatomes. Également, l’ajout dans le plasma de N2 sur le type et l'amplitude des contraintes dans les films d'Ag est étudié. L'ajout de quelques pourcents de N2 en phase gaz donne lieu à un renversement de la contrainte de compression et une évolution en tension au-delà de la continuité du film. Cet effet est attribué à une croissance anormale des grains géants et le développement de rugosité de surface. L’ensemble des résultats obtenus dans cette thèse fournissent les bases pour: (i) déterminer les coefficients de diffusion sur une large gamme de systèmes films/SFI; (ii) concevoir des stratégies non invasives pour les contacts multifonctionnels dans les dispositifs optoélectroniques; (iii) apporter des éléments de compréhension à l’origine du développement de contrainte, qui permettent de prédire et contrôler le niveau de contrainte intrinsèque à la croissance de films minces polycristallins.