EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Adaptive Hidden Markov Noise Modelling for Speech Enhancement

Download or read book Adaptive Hidden Markov Noise Modelling for Speech Enhancement written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Noise Reduction in Speech Applications

Download or read book Noise Reduction in Speech Applications written by Gillian M. Davis and published by CRC Press. This book was released on 2018-10-03 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noise and distortion that degrade the quality of speech signals can come from any number of sources. The technology and techniques for dealing with noise are almost as numerous, but it is only recently, with the development of inexpensive digital signal processing hardware, that the implementation of the technology has become practical. Noise Reduction in Speech Applications provides a comprehensive introduction to modern techniques for removing or reducing background noise from a range of speech-related applications. Self-contained, it starts with a tutorial-style chapter of background material, then focuses on system aspects, digital algorithms, and implementation. The final section explores a variety of applications and demonstrates to potential users of the technology the results possible with the noise reduction techniques presented. The book offers chapters contributed by international experts, a practical, systems approach, and numerous references. For electrical, acoustics, signal processing, communications, and bioengineers, Noise Reduction in Speech Applications is a valuable resource that shows you how to decide whether noise reduction will solve problems in your own systems and how to make the best use of the technologies available.

Book Academic Press Library in Signal Processing

Download or read book Academic Press Library in Signal Processing written by and published by Academic Press. This book was released on 2013-09-14 with total page 1131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic

Book Advanced Digital Signal Processing and Noise Reduction

Download or read book Advanced Digital Signal Processing and Noise Reduction written by Saeed V. Vaseghi and published by John Wiley & Sons. This book was released on 2008-12-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates and extends the chapters in the previous edition and includes two new chapters on MIMO systems, Correlation and Eigen analysis and independent component analysis. The wide range of topics covered in this book include Wiener filters, echo cancellation, channel equalisation, spectral estimation, detection and removal of impulsive and transient noise, interpolation of missing data segments, speech enhancement and noise/interference in mobile communication environments. This book provides a coherent and structured presentation of the theory and applications of statistical signal processing and noise reduction methods. Two new chapters on MIMO systems, correlation and Eigen analysis and independent component analysis Comprehensive coverage of advanced digital signal processing and noise reduction methods for communication and information processing systems Examples and applications in signal and information extraction from noisy data Comprehensive but accessible coverage of signal processing theory including probability models, Bayesian inference, hidden Markov models, adaptive filters and Linear prediction models Advanced Digital Signal Processing and Noise Reduction is an invaluable text for postgraduates, senior undergraduates and researchers in the fields of digital signal processing, telecommunications and statistical data analysis. It will also be of interest to professional engineers in telecommunications and audio and signal processing industries and network planners and implementers in mobile and wireless communication communities.

Book The Application of Hidden Markov Models in Speech Recognition

Download or read book The Application of Hidden Markov Models in Speech Recognition written by Mark Gales and published by Now Publishers Inc. This book was released on 2008 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.

Book Speech Enhancement for Non stationary Noise Based on Spectral Processing

Download or read book Speech Enhancement for Non stationary Noise Based on Spectral Processing written by Mads Helle and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Speech Recognition of Uncertain or Missing Data

Download or read book Robust Speech Recognition of Uncertain or Missing Data written by Dorothea Kolossa and published by Springer Science & Business Media. This book was released on 2011-07-14 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition. The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.

Book Multimedia Signal Processing

Download or read book Multimedia Signal Processing written by Saeed V. Vaseghi and published by John Wiley & Sons. This book was released on 2007-10-22 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multimedia Signal Processing is a comprehensive and accessible text to the theory and applications of digital signal processing (DSP). The applications of DSP are pervasive and include multimedia systems, cellular communication, adaptive network management, radar, pattern recognition, medical signal processing, financial data forecasting, artificial intelligence, decision making, control systems and search engines. This book is organised in to three major parts making it a coherent and structured presentation of the theory and applications of digital signal processing. A range of important topics are covered in basic signal processing, model-based statistical signal processing and their applications. Part 1: Basic Digital Signal Processing gives an introduction to the topic, discussing sampling and quantization, Fourier analysis and synthesis, Z-transform, and digital filters. Part 2: Model-based Signal Processing covers probability and information models, Bayesian inference, Wiener filter, adaptive filters, linear prediction hidden Markov models and independent component analysis. Part 3: Applications of Signal Processing in Speech, Music and Telecommunications explains the topics of speech and music processing, echo cancellation, deconvolution and channel equalization, and mobile communication signal processing. Covers music signal processing, explains the anatomy and psychoacoustics of hearing and the design of MP3 music coder Examines speech processing technology including speech models, speech coding for mobile phones and speech recognition Covers single-input and multiple-inputs denoising methods, bandwidth extension and the recovery of lost speech packets in applications such as voice over IP (VoIP) Illustrated throughout, including numerous solved problems, Matlab experiments and demonstrations Companion website features Matlab and C++ programs with electronic copies of all figures. This book is ideal for researchers, postgraduates and senior undergraduates in the fields of digital signal processing, telecommunications and statistical data analysis. It will also be a valuable text to professional engineers in telecommunications and audio and signal processing industries.

Book Speech Enhancement in Non Stationary Noise Environments

Download or read book Speech Enhancement in Non Stationary Noise Environments written by Ch. V. Rama Rao and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In speech communication and particularly in mobile voice communication, noise reduction is a vital task for improvement in the quality of communication. Several speech enhancement algorithms available in the literature are mainly for the reduction of noise in stationary environments. In this paper, a two-stage noise reduction algorithm is proposed, which suits both quasi-stationary and non-stationary noise environments. The algorithm is based on two-stage noise filtering, using spectral gain and perceptually motivated weighting techniques. The proposed speech enhancement algorithm and three other algorithms are used to reduce noise in different noisy speech samples, the results of which are compared and discussed.

Book Speech Enhancement with Improved Deep Learning Methods

Download or read book Speech Enhancement with Improved Deep Learning Methods written by Mojtaba Hasannezhad and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In real-world environments, speech signals are often corrupted by ambient noises during their acquisition, leading to degradation of quality and intelligibility of the speech for a listener. As one of the central topics in the speech processing area, speech enhancement aims to recover clean speech from such a noisy mixture. Many traditional speech enhancement methods designed based on statistical signal processing have been proposed and widely used in the past. However, the performance of these methods was limited and thus failed in sophisticated acoustic scenarios. Over the last decade, deep learning as a primary tool to develop data-driven information systems has led to revolutionary advances in speech enhancement. In this context, speech enhancement is treated as a supervised learning problem, which does not suffer from issues faced by traditional methods. This supervised learning problem has three main components: input features, learning machine, and training target. In this thesis, various deep learning architectures and methods are developed to deal with the current limitations of these three components. First, we propose a serial hybrid neural network model integrating a new low-complexity fully-convolutional convolutional neural network (CNN) and a long short-term memory (LSTM) network to estimate a phase-sensitive mask for speech enhancement. Instead of using traditional acoustic features as the input of the model, a CNN is employed to automatically extract sophisticated speech features that can maximize the performance of a model. Then, an LSTM network is chosen as the learning machine to model strong temporal dynamics of speech. The model is designed to take full advantage of the temporal dependencies and spectral correlations present in the input speech signal while keeping the model complexity low. Also, an attention technique is embedded to recalibrate the useful CNN-extracted features adaptively. Through extensive comparative experiments, we show that the proposed model significantly outperforms some known neural network-based speech enhancement methods in the presence of highly non-stationary noises, while it exhibits a relatively small number of model parameters compared to some commonly employed DNN-based methods. Most of the available approaches for speech enhancement using deep neural networks face a number of limitations: they do not exploit the information contained in the phase spectrum, while their high computational complexity and memory requirements make them unsuited for real-time applications. Hence, a new phase-aware composite deep neural network is proposed to address these challenges. Specifically, magnitude processing with spectral mask and phase reconstruction using phase derivative are proposed as key subtasks of the new network to simultaneously enhance the magnitude and phase spectra. Besides, the neural network is meticulously designed to take advantage of strong temporal and spectral dependencies of speech, while its components perform independently and in parallel to speed up the computation. The advantages of the proposed PACDNN model over some well-known DNN-based SE methods are demonstrated through extensive comparative experiments. Considering that some acoustic scenarios could be better handled using a number of low-complexity sub-DNNs, each specifically designed to perform a particular task, we propose another very low complexity and fully convolutional framework, performing speech enhancement in short-time modified discrete cosine transform (STMDCT) domain. This framework is made up of two main stages: classification and mapping. In the former stage, a CNN-based network is proposed to classify the input speech based on its utterance-level attributes, i.e., signal-to-noise ratio and gender. In the latter stage, four well-trained CNNs specialized for different specific and simple tasks transform the STMDCT of noisy input speech to the clean one. Since this framework is designed to perform in the STMDCT domain, there is no need to deal with the phase information, i.e., no phase-related computation is required. Moreover, the training target length is only one-half of those in the previous chapters, leading to lower computational complexity and less demand for the mapping CNNs. Although there are multiple branches in the model, only one of the expert CNNs is active for each time, i.e., the computational burden is related only to a single branch at anytime. Also, the mapping CNNs are fully convolutional, and their computations are performed in parallel, thus reducing the computational time. Moreover, this proposed framework reduces the latency by %55 compared to the models in the previous chapters. Through extensive experimental studies, it is shown that the MBSE framework not only gives a superior speech enhancement performance but also has a lower complexity compared to some existing deep learning-based methods.

Book An Integrated Approach to Feature Compensation Combining Particle Filters and Hidden Markov Models for Robust Speech Recognition

Download or read book An Integrated Approach to Feature Compensation Combining Particle Filters and Hidden Markov Models for Robust Speech Recognition written by Aleem Mushtaq and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The performance of automatic speech recognition systems often degrades in adverse conditions where there is a mismatch between training and testing conditions. This is true for most modern systems which employ Hidden Markov Models (HMMs) to decode speech utterances. One strategy is to map the distorted features back to clean speech features that correspond well to the features used for training of HMMs. This can be achieved by treating the noisy speech as the distorted version of the clean speech of interest. Under this framework, we can track and consequently extract the underlying clean speech from the noisy signal and use this derived signal to perform utterance recognition. Particle filter is a versatile tracking technique that can be used where often conventional techniques such as Kalman filter fall short. We propose a particle filters based algorithm to compensate the corrupted features according to an additive noise model incorporating both the statistics from clean speech HMMs and observed background noise to map noisy features back to clean speech features. Instead of using specific knowledge at the model and state levels from HMMs which is hard to estimate, we pool model states into clusters as side information. Since each cluster encompasses more statistics when compared to the original HMM states, there is a higher possibility that the newly formed probability density function at the cluster level can cover the underlying speech variation to generate appropriate particle filter samples for feature compensation. Additionally, a dynamic joint tracking framework to monitor the clean speech signal and noise simultaneously is also introducedto obtain good noise statistics. In this approach, the information available from clean speech tracking can be effectively used for noise estimation. The availability of dynamic noise information can enhance the robustness of the algorithm in case of large fluctuations in noise parameters within an utterance. Testing the proposed PF-based compensation scheme on the Aurora 2 connected digit recognition task, we achieve an error reduction of 12.15% from the best multi-condition trained models using this integrated PF-HMM framework to estimate the cluster-based HMM state sequence information. Finally, we extended the PFC framework and evaluated it on a large-vocabulary recognition task, and showed that PFC works well for large-vocabulary systems also.

Book Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Download or read book Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models written by and published by . This book was released on 2013 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Speech Enhancement

    Book Details:
  • Author : Shoji Makino
  • Publisher : Springer Science & Business Media
  • Release : 2005-03-17
  • ISBN : 9783540240396
  • Pages : 432 pages

Download or read book Speech Enhancement written by Shoji Makino and published by Springer Science & Business Media. This book was released on 2005-03-17 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field.

Book Speech Enhancement in the Karhunen Lo  ve Expansion Domain

Download or read book Speech Enhancement in the Karhunen Lo ve Expansion Domain written by Jacob Benesty and published by Morgan & Claypool Publishers. This book was released on 2011 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of the problem of speech enhancement whose objective is the recovery of a signal of interest (i.e., speech) from noisy observations. Typically, the recovery process is accomplished by passing the noisy observations through a linear filter (or a linear transformation). Since both the desired speech and undesired noise are filtered at the same time, the most critical issue of speech enhancement resides in how to design a proper optimal filter that can fully take advantage of the difference between the speech and noise statistics to mitigate the noise effect as much as possible while maintaining the speech perception identical to its original form. The optimal filters can be designed either in the time domain or in a transform space. As the title indicates, this book will focus on developing and analyzing optimal filters in the Karhunen-Loève expansion (KLE) domain. We begin by describing the basic problem of speech enhancement and the fundamental principles to solve it in the time domain. We then explain how the problem can be equivalently formulated in the KLE domain. Next, we divide the general problem in the KLE domain into four groups, depending on whether interframe and interband information is accounted for, leading to four linear models for speech enhancement in the KLE domain. For each model, we introduce signal processing measures to quantify the performance of speech enhancement, discuss the formation of different cost functions, and address the optimization of these cost functions for the derivation of different optimal filters. Both theoretical analysis and experiments will be provided to study the performance of these filters and the links between the KLE-domain and time-domain optimal filters will be examined. Table of Contents: Introduction / Problem Formulation / Optimal Filters in the Time Domain / Linear Models for Signal Enhancement in the KLE Domain / Optimal Filters in the KLE Domain with Model 1 / Optimal Filters in the KLE Domain with Model 2 / Optimal Filters in the KLE Domain with Model 3 / Optimal Filters in the KLE Domain with Model 4 / Experimental Study