Download or read book Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters written by Springer and published by . This book was released on 2013-01-22 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Spectroscopic Investigations of Hydrogen Bond Network Structures in Water Clusters written by Kenta Mizuse and published by Springer Science & Business Media. This book was released on 2013-01-22 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties and nature of water clusters studied with novel spectroscopic approaches are presented in this thesis. Following a general introduction on the chemistry of water and water clusters, detailed descriptions of the experiments and analyses are given. All the experimental results, including first size-selective spectra of large clusters consisting of 200 water molecules, are presented with corresponding analyses. Hitherto unidentified hydrogen bond network structures, dynamics, and reactivity of various water clusters have been characterized at the molecular level. The main targets of this book are physical chemists and chemical physicists who are interested in water chemistry or cluster chemistry.
Download or read book Practical Aspects of Computational Chemistry II written by Jerzy Leszczynski and published by Springer Science & Business Media. This book was released on 2012-07-09 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends gathers the discussion of advances made within the last 20 years by well-known experts in the area of theoretical and computational chemistry and physics. The title reflects the celebration of the twentieth anniversary of the “Conference on Current Trends in Computational Chemistry (CCTCC)” to success of which all authors contributed. Starting with the recent development of modeling of solvation effect using the Polarizable Continuum Model (PCM) at the Coupled-Cluster level and the effects of extreme pressure on the molecular properties within the PCM framework, this volume focuses on the association/dissociation of ion pairs in binary solvent mixtures, application of graph theory to determine the all possible structures and temperature-dependent distribution of water cluster, generalized-ensemble algorithms for the complex molecular simulation, QM/MD based investigation of formation of different nanostructures under nonequilibrium conditions, quantum mechanical study of chemical reactivity of carbon nanotube, covalent functionalization of single walled-carbon nanotube, designing of functional materials, importance of long-range dispersion interaction to study nanomaterials, recent advances in QSPR/QSAR analysis of nitrocompounds, prediction of physico-chemical properties of energetic materials, electronic structure and properties of 3d transition metal dimers, the s-bond activation reactions by transition metal complexes, theoretical modeling of environmental mercury depletion reaction, organolithium chemistry and computational modeling of low-energy electron induced DNA damage. Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends is aimed at theoretical and computational chemists, physical chemists, materials scientists, and particularly those who are eager to apply computational chemistry methods to problems of chemical and physical importance. This book provides valuable information to undergraduate, graduate, and PhD students as well as to established researchers. Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends is aimed at theoretical and computational chemists, physical chemists, materials scientists, and particularly those who are eager to apply computational chemistry methods to problems of chemical and physical importance. This book provides valuable information to undergraduate, graduate, and PhD students as well as to established researchers.
Download or read book Non covalent Interactions written by Pavel Hobza and published by Royal Society of Chemistry. This book was released on 2010 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Co-authored by an experimentalist (Klaus M3ller-Dethlefs ) and theoretician (Pavel Hobza), the aim of this book is to provide a general introduction into the science behind non-covalent interactions and molecular complexes using some important experimental and theoretical methods and approaches.
Download or read book Hydrogen Bonding New Insights written by Slawomir Grabowski and published by Springer Science & Business Media. This book was released on 2006-10-07 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses examples from experimental studies to illustrate theoretical investigations, allowing greater understanding of hydrogen bonding phenomena. The most important topics in recent studies are covered. This volume is an invaluable resource that will be of particular interest to physical and theoretical chemists, spectroscopists, crystallographers and those involved with chemical physics.
Download or read book Hydrogen Bond Networks written by Marie-Claire Bellisent-Funel and published by Springer. This book was released on 2014-03-14 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: The almost universal presence of water in our everyday lives and the very `common' nature of its presence and properties possibly deflects attention from the fact that it has a number of very unusual characteristics which, furthermore, are found to be extremely sensitive to physical parameters, chemical environment and other influences. Hydrogen-bonding effects, too, are not restricted to water, so it is necessary to investigate other systems as well, in order to understand the characteristics in a wider context. Hydrogen Bond Networks reflects the diversity and relevance of water in subjects ranging from the fundamentals of condensed matter physics, through aspects of chemical reactivity to structure and function in biological systems.
Download or read book Physical Chemistry of Cold Gas Phase Functional Molecules and Clusters written by Takayuki Ebata and published by Springer. This book was released on 2019-08-02 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes advanced research on the structures and photochemical properties of polyatomic molecules and molecular clusters having various functionalities under cold gas-phase conditions. Target molecules are crown ethers, polypeptides, large size protonated clusters, metal clusters, and other complex polyatomic molecules of special interest. A variety of advanced frequency and time-domain laser spectroscopic methods are applied. The book begins with the principle of an experimental setup for cold gas-phase molecules and various laser spectroscopic methods, followed by chapters on investigation of specific molecular systems. Through a molecular-level approach and analysis by quantum chemical calculation, it is possible to learn how atomic and molecular-level interactions (van der Waals, hydrogen-bonding, and others) control the specific properties of molecules and clusters. Those properties include molecular recognition, induced fitting, chirality, proton and hydrogen transfer, isomerization, and catalytic reaction. The information will be applicable to the design of new types of functional molecules and nanoparticles in the broad area that includes applied chemistry, drug delivery systems, and catalysts.
Download or read book Spectroscopy and Computation of Hydrogen BondedSystems written by Marek J. Wójcik and published by John Wiley & Sons. This book was released on 2023-03-27 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems. Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented. Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include: Quantum-mechanical treatments of tunneling-mediated pathways in enzyme catalysis and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.
Download or read book Nuclear Magnetic Resonance Studies of Interfacial Phenomena written by Vladimir M. Gun'ko and published by CRC Press. This book was released on 2013-04-08 with total page 1035 pages. Available in PDF, EPUB and Kindle. Book excerpt: Properties and applications of high surface area materials depend on interfacial phenomena, including diffusion, sorption, dissolution, solvation, surface reactions, catalysis, and phase transitions. Among the physicochemical methods that give useful information regarding these complex phenomena, nuclear magnetic resonance (NMR) spectroscopy is the
Download or read book Molecular Reaction Dynamics written by Raphael D. Levine and published by Cambridge University Press. This book was released on 2009-06-04 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.
Download or read book Density Functional Theory written by Daniel Glossman-Mitnik and published by BoD – Books on Demand. This book was released on 2022-05-18 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density Functional Theory (DFT) is a powerful technique for calculating and comprehending the molecular and electrical structure of atoms, molecules, clusters, and solids. Its use is based not only on the capacity to calculate the molecular characteristics of the species of interest but also on the provision of interesting concepts that aid in a better understanding of the chemical reactivity of the systems under study. This book presents examples of recent advances, new perspectives, and applications of DFT for the understanding of chemical reactivity through descriptors forming the basis of Conceptual DFT as well as the application of the theory and its related computational procedures in the determination of the molecular properties of different systems of academic, social, and industrial interest.
Download or read book Visualization of Hydrogen Bond Dynamics written by Takashi Kumagai and published by Springer Science & Business Media. This book was released on 2012-09-02 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hydrogen bond represents an important interaction between molecules, and the dynamics of hydrogen bonds in water create an ever-present question associated with the process of chemical and biological reactions. In spite of numerous studies, the process remains poorly understood at the microscopic level because hydrogen-bond dynamics, such as bond rearrangements and hydrogen/proton transfer reactions, are extremely difficult to probe. Those studies have been carried out by means of spectroscopic methods where the signal stems from the ensemble of a system and the hydrogen-bond dynamics were inferred indirectly. This book addresses the direct imaging of hydrogen-bond dynamics within water-based model systems assembled on a metal surface, using a scanning tunneling microscope (STM). The dynamics of individual hydrogen bonds in water clusters, hydroxyl clusters, and water-hydroxyl complexes are investigated in conjunction with density functional theory. In these model systems, quantum dynamics of hydrogen bonds, such as tunneling and zero-point nuclear motion, are observed in real space. Most notably, hydrogen atom relay reactions, which are frequently invoked across many fields of chemistry, are visualized and controlled by STM. This work presents a means of studying hydrogen-bond dynamics at the single-molecule level, providing an important contribution to wide fields beyond surface chemistry.
Download or read book Handbook of Near Infrared Analysis written by Emil W. Ciurczak and published by CRC Press. This book was released on 2021-05-20 with total page 1308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid, inexpensive, and easy-to-deploy, near-infrared (NIR) spectroscopy can be used to analyze samples of virtually any composition, origin, and condition. The Handbook of Near Infrared Analysis, Fourth Edition, explores the factors necessary to perform accurate and time- and cost-effective analyses across a growing spectrum of disciplines. This updated and expanded edition incorporates the latest advances in instrumentation, computerization, chemometrics applied to NIR spectroscopy, and method development in NIR spectroscopy, and underscores current trends in sample preparation, calibration transfer, process control, data analysis, instrument performance testing, and commercial NIR instrumentation. This work offers readers an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience. Additional features include the following: Explains how to perform accurate as well as time- and cost-effective analyses. Reviews software-enabled chemometric methods and other trends in data analysis. Highlights novel applications in pharmaceuticals, polymers, plastics, petrochemicals, textiles, foods and beverages, baked products, agricultural products, biomedicine, nutraceuticals, and counterfeit detection. Underscores current trends in sample preparation, calibration transfer, process control, data analysis, and multiple aspects of commercial NIR instrumentation. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Fourth Edition, continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and detailed practical experience provided firsthand by more than 50 experts in the field.
Download or read book Molecular Basics of Liquids and Liquid Based Materials written by Katsura Nishiyama and published by Springer Nature. This book was released on 2022-01-03 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book sheds light on the molecular aspects of liquids and liquid-based materials such as organic or inorganic liquids, ionic liquids, proteins, biomaterials, and soft materials including gels. The reader discovers how the molecular basics of such systems are connected with their properties, dynamics, and functions. Once the use and application of liquids and liquid-based materials are understood, the book becomes a source of the latest, detailed knowledge of their structures, dynamics, and functions emerging from molecularity. The systems discussed in the book have structural dimensions varying from nanometers to millimeters, thus the precise estimation of structures and dynamics from experimental, theoretical, and simulation methods is of crucial importance. Outlines of the practical knowledge needed in research and development are helpfully included in the book.
Download or read book Molecular Mechanisms of Proton coupled Electron Transfer and Water Oxidation in Photosystem II written by Shin Nakamura and published by Springer Nature. This book was released on 2020-01-03 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews photosynthetic water oxidation and proton-coupled electron transfer in photosystem, focusing on the molecular vibrations of amino acid residues and water molecules. Photosynthetic water oxidation performed by plants and cyanobacteria is essential for the sustenance of life on Earth, not only as an electron source for synthesizing sugars from CO2, but also as an O2 source in the atmosphere. Water oxidation takes place at the Mn4CaO5 cluster in photosystem II, where a series of electron transfer reactions coupled with proton transfer occur using light energy. The author addresses the unresolved mechanisms of photosynthetic water oxidation and relevant proton-coupled electron transfer reactions using a combined approach of experimental and computational methods such as Fourier transform infrared difference spectroscopy and quantum chemical calculations. The results show that protonation and hydrogen-bond structures of water molecules and amino acid residues in the protein play important roles in regulation of the electron and proton transfer reactions. These findings and the methodology make a significant contribution to our understanding the molecular mechanism of photosynthetic water oxidation.
Download or read book Encyclopedia of Ionic Liquids written by Suojiang Zhang and published by Springer Nature. This book was released on 2023-02-03 with total page 1391 pages. Available in PDF, EPUB and Kindle. Book excerpt: The encyclopedia consists 13 subareas as follows: 1: Synthesis and Characterisation of Ionic Liquids (Section Editors: Prof. Fu-Wei Li and Prof. Zhen Li) 2: Physicochemical Properties of Ionic Liquids (Section Editors: Asso. Prof. Qing Zhou, Prof. Xingmei Lu and Prof. Xiaoyan Ji) 3: Computational and Theoretical Modeling of Ionic Liquids (Section Editors: Prof. Guang Feng and Prof. Peter T. Cummings) 4: Toxicology and Biodegradation of Ionic Liquids (Section Editors: Prof. Chunxi Li and Prof. Stefan Stolte) 5: Ionic Liquids in Electrochemistry (Section Editors: Prof. Yingying Lu, Prof. Houlong Zhuang and Prof. Chuan Zhao) 6. Ionic Liquids in Organic Reaction (Section Editors: Prof. Liang-Nian He and Prof. Bhalchandra M. Bhanage) 7. Ionic Liquids in Separation (Section Editors: Prof. Huabin Xing) 8. Ionic Liquids in Biomass and Biomolecules (Section Editors: Prof. Toshiyuki Itoh and Prof. Jian Sun) 9. Ionic Liquids in Materials Science (Section Editors: Prof. Sheng Dai and Prof. Tao Wang) 10. Ionic Liquids in Polymer Science (Section Editors: Asso. Prof. Jinming Zhang and Prof. Jun Zhang) 11. Ionic Liquids in Environmental Science (Section Editors: Prof. Tiancheng Mu, Prof. Arunprakash T. Karunanithi and Prof. Yingxiong Wang) 12. Ionic Liquids in Green Chemistry (Section Editors: Prof. Buxing Han and Prof. Peter Licence) 13. Emerging Applications of Ionic Liquids (Pharmacology, Food Science, Agriculture, Nuclear Science Technology, Optics) (Section Editors: Prof. Zhonghao Li and Prof. Maya Guncheva) This encyclopedia is systematic and comprehensive, with detailed descriptions about theory, technology, and industrial applications. This encyclopedia is valuable for students, researchers and industrial players, giving them a quick understanding and overview of ionic liquids in various aspects.
Download or read book Structures and Interactions of Ionic Liquids written by Suojiang Zhang and published by Springer. This book was released on 2013-12-20 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structures, Bonding and Hydrogen Bonds, by Kun Dong, Qian Wang, Xingmei Lu, Suojiang Zhang Aggregation in System of Ionic Liquids, by Jianji Wang, Huiyong Wang Dissolution of Biomass Using Ionic Liquids, by Hui Wang, Gabriela Gurau, Robin D. Rogers Effect of the Structures of Ionic Liquids on Their Physical-Chemical Properties, by Yu-Feng Hu, Xiao-Ming Peng Microstructure study of Ionic liquids by spectroscopy, by Haoran Li Structures and Thermodynamic Properties of Ionic Liquids, by Tiancheng Mu, Buxing Han