EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Spectral Theory of Bounded Linear Operators

Download or read book Spectral Theory of Bounded Linear Operators written by Carlos S. Kubrusly and published by Springer Nature. This book was released on 2020-01-30 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.

Book Spectral Theory and Applications of Linear Operators and Block Operator Matrices

Download or read book Spectral Theory and Applications of Linear Operators and Block Operator Matrices written by Aref Jeribi and published by Springer. This book was released on 2015-07-04 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.

Book Spectral Theory of Linear Operators

Download or read book Spectral Theory of Linear Operators written by Vladimir Müller and published by Springer Science & Business Media. This book was released on 2007-12-24 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. Many results appear here for the first time in a monograph.

Book Spectral Theory of Linear Operators and Related Topics

Download or read book Spectral Theory of Linear Operators and Related Topics written by Grigore Arsene and published by Birkhäuser. This book was released on 1984 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Spectral Theory

Download or read book Nonlinear Spectral Theory written by Jürgen Appell and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: In view of the eminent importance of spectral theory of linear operators in many fields of mathematics and physics, it is not surprising that various attempts have been made to define and study spectra also for nonlinear operators. This book provides a comprehensive and self-contained treatment of the theory, methods, and applications of nonlinear spectral theory. The first chapter briefly recalls the definition and properties of the spectrum and several subspectra for bounded linear operators. Then some numerical characteristics for nonlinear operators are introduced which are useful for describing those classes of operators for which there exists a spectral theory. Since spectral values are closely related to solvability results for operator equations, various conditions for the local or global invertibility of a nonlinear operator are collected in the third chapter. The following two chapters are concerned with spectra for certain classes of continuous, Lipschitz continuous, or differentiable operators. These spectra, however, simply adapt the corresponding definitions from the linear theory which somehow restricts their applicability. Other spectra which are defined in a completely different way, but seem to have useful applications, are defined and studied in the following four chapters. The remaining three chapters are more application-oriented and deal with nonlinear eigenvalue problems, numerical ranges, and selected applications to nonlinear problems. The only prerequisite for understanding this book is a modest background in functional analysis and operator theory. It is addressed to non-specialists who want to get an idea of the development of spectral theory for nonlinear operators in the last 30 years, as well as a glimpse of the diversity of the directions in which current research is moving.

Book Perturbation theory for linear operators

Download or read book Perturbation theory for linear operators written by Tosio Kato and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spectral Theory of Hyponormal Operators

Download or read book Spectral Theory of Hyponormal Operators written by Xia and published by Birkhäuser. This book was released on 2013-11-22 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral analysis of linear operators has always been one of the more active and important fields of operator theory, and of extensive interest to many operator theorists. Its devel opments usually are closely related to certain important problems in contemporary mathematics and physics. In the last 20 years, many new theories and interesting results have been discovered. Now, in this direction, the fields are perhaps wider and deeper than ever. This book is devoted to the study of hyponormal and semi-hyponormal operators. The main results we shall present are those of the author and his collaborators and colleagues, as well as some concerning related topics. To some extent, hyponormal and semi-hyponormal opera tors are "close" to normal ones. Although those two classes of operators contain normal operators as a subclass, what we are interested in are, naturally, nonnormal operators in those classes. With the well-studied normal operators in hand, we cer tainly wish to know the properties of hyponormal and semi-hypo normal operators which resemble those of normal operators. But more important than that, the investigations should be concen trated on the phenomena which only occur in the nonnormal cases.

Book Introduction to Spectral Theory in Hilbert Space

Download or read book Introduction to Spectral Theory in Hilbert Space written by Gilbert Helmberg and published by Elsevier. This book was released on 2014-11-28 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.

Book Elements of Hilbert Spaces and Operator Theory

Download or read book Elements of Hilbert Spaces and Operator Theory written by Harkrishan Lal Vasudeva and published by Springer. This book was released on 2017-03-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

Book Spectral Theory and Differential Operators

Download or read book Spectral Theory and Differential Operators written by David Eric Edmunds and published by Oxford University Press. This book was released on 2018 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.

Book A Guide to Spectral Theory

Download or read book A Guide to Spectral Theory written by Christophe Cheverry and published by Springer Nature. This book was released on 2021-05-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.

Book Notes on Spectral Theory

Download or read book Notes on Spectral Theory written by Sterling K. Berberian and published by . This book was released on 1966 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topics in Operator Theory

Download or read book Topics in Operator Theory written by Carl M. Pearcy and published by American Mathematical Soc.. This book was released on 1974-12-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with various aspects of the theory of bounded linear operators on Hilbert space. This book offers information on weighted shift operators with scalar weights.

Book Basic Operator Theory

Download or read book Basic Operator Theory written by Israel Gohberg and published by Birkhäuser. This book was released on 2013-12-01 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap ters V, VII and XII due to the specialized nature of the subject matter.

Book Spectral Theory and Its Applications

Download or read book Spectral Theory and Its Applications written by Bernard Helffer and published by Cambridge University Press. This book was released on 2013-01-17 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the basic tools in spectral analysis using numerous examples from the Schrödinger operator theory and various branches of physics.

Book Spectral Theory of Self Adjoint Operators in Hilbert Space

Download or read book Spectral Theory of Self Adjoint Operators in Hilbert Space written by Michael Sh. Birman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: It isn't that they can't see the solution. It is Approach your problems from the right end that they can't see the problem. and begin with the answers. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order" , which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Book A Course in Functional Analysis

Download or read book A Course in Functional Analysis written by John B Conway and published by Springer. This book was released on 2019-03-09 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS