EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Spectral Properties of Self similar Lattices and Iteration of Rational Maps

Download or read book Spectral Properties of Self similar Lattices and Iteration of Rational Maps written by Christophe Sabot and published by . This book was released on 2003 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, the author considers discrete Laplace operators defined on lattices based on finitely ramified self-similar sets and their continuous analogs defined on the self-similar sets. He focuses on the spectral properties of these operators. The basic example is the lattice based on the Sierpinski gasket. He introduces a new renormalization map that appears to be a rational map defined on a smooth projective variety. (More precisely, this variety is isomorphic to a product of three types of Grassmannians: complex Grassmannians, Lagrangian Grassmannian, and orthogonal Grassmannians.) He relates some characteristics of the dynamics of its iterates with some characteristics of the spectrum of the operator. Specifically, he gives an explicit formula for the density of states in terms of the Green current of the map, and he relates the indeterminacy points of the map with the so-called Neumann-Dirichlet eigenvalues which lead to eigenfunctions with compact support on the unbounded lattice. Depending on the asymptotic degree of the map, he can prove drastically different spectral properties of the operators. The formalism is valid for the general class of finitely ramified self-similar sets.

Book Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics  Fractals in pure mathematics

Download or read book Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics Fractals in pure mathematics written by David Carfi and published by American Mathematical Soc.. This book was released on 2013-10-22 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.

Book Quantized Number Theory  Fractal Strings And The Riemann Hypothesis  From Spectral Operators To Phase Transitions And Universality

Download or read book Quantized Number Theory Fractal Strings And The Riemann Hypothesis From Spectral Operators To Phase Transitions And Universality written by Hafedh Herichi and published by World Scientific. This book was released on 2021-07-27 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Book Differential Equations on Fractals

Download or read book Differential Equations on Fractals written by Robert S. Strichartz and published by Princeton University Press. This book was released on 2018-06-05 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations on Fractals opens the door to understanding the recently developed area of analysis on fractals, focusing on the construction of a Laplacian on the Sierpinski gasket and related fractals. Written in a lively and informal style, with lots of intriguing exercises on all levels of difficulty, the book is accessible to advanced undergraduates, graduate students, and mathematicians who seek an understanding of analysis on fractals. Robert Strichartz takes the reader to the frontiers of research, starting with carefully motivated examples and constructions. One of the great accomplishments of geometric analysis in the nineteenth and twentieth centuries was the development of the theory of Laplacians on smooth manifolds. But what happens when the underlying space is rough? Fractals provide models of rough spaces that nevertheless have a strong structure, specifically self-similarity. Exploiting this structure, researchers in probability theory in the 1980s were able to prove the existence of Brownian motion, and therefore of a Laplacian, on certain fractals. An explicit analytic construction was provided in 1989 by Jun Kigami. Differential Equations on Fractals explains Kigami's construction, shows why it is natural and important, and unfolds many of the interesting consequences that have recently been discovered. This book can be used as a self-study guide for students interested in fractal analysis, or as a textbook for a special topics course.

Book Fractal Geometry and Stochastics III

Download or read book Fractal Geometry and Stochastics III written by Christoph Bandt and published by Springer Science & Business Media. This book was released on 2004-07-23 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date monograph, providing an up-to-date overview of the field of Hepatitis Prevention and Treatment, includes contributions from internationally recognized experts on viral hepatitis, and covers the current state of knowledge and practice regarding the molecular biology, immunology, biochemistry, pharmacology and clinical aspects of chronic HBV and HCV infection. The book provides the latest information, with sufficient background and discussion of the literature to benefit the newcomer to the field.

Book Fractal Geometry and Applications  A Jubilee of Benoit Mandelbrot

Download or read book Fractal Geometry and Applications A Jubilee of Benoit Mandelbrot written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2004 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.

Book Analytic Number Theory

Download or read book Analytic Number Theory written by Carl Pomerance and published by Springer. This book was released on 2015-11-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Régis de la Bretèche, Christian Elsholtz, John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivić, Geoffrey Iyer, Jerzy Kaczorowski, Daniel M. Kane, Sergei Konyagin, Dimitris Koukoulopoulos, Michel L. Lapidus, Oleg Lazarev, Andrew H. Ledoan, Robert J. Lemke Oliver, Florian Luca, James Maynard, Steven J. Miller, Hugh L. Montgomery, Melvyn B. Nathanson, Ashkan Nikeghbali, Alberto Perelli, Amalia Pizarro-Madariaga, János Pintz, Paul Pollack, Carl Pomerance, Michael Th. Rassias, Maksym Radziwiłł, Joël Rivat, András Sárközy, Jeffrey Shallit, Terence Tao, Gérald Tenenbaum, László Tóth, Tamar Ziegler, Liyang Zhang.

Book ESAIM

Download or read book ESAIM written by and published by . This book was released on 2006 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book On Mapping Properties of the General Relativistic Constraints Operator in Weighted Function Spaces  with Applications

Download or read book On Mapping Properties of the General Relativistic Constraints Operator in Weighted Function Spaces with Applications written by Piotr T. Chruściel and published by . This book was released on 2003 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the authors prove perturbation and gluing results for solutions of the general relativistic constraints with controlled boundary behavior or asymptotic behavior. This is obtained by a study of the linearized equation in weighted spaces a la Corvino-Schoen. Among other methods, this can be used to prove existence of non-trivial asymptotically simple vacuum space-times. The book is suitable for graduate students and research mathematicians interested in analysis.

Book Strichartz Estimates for Schr  dinger Equations with Variable Coefficients

Download or read book Strichartz Estimates for Schr dinger Equations with Variable Coefficients written by Luc Robbiano and published by . This book was released on 2005 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors prove the (local in time) Stricharz estimates (for the full range of parameters given by the scaling unless the end point) for asymptotically flat and non trapping perturbations of the flat Laplacian in $\mathbb {R} ^n$, $n\geq 2$. The main point of the proof, namely the dispersion estimate, is obtained in constructing a parametrix. The main tool for this construction is the use of the Fourier-Bros-Iagolnitzer (FBI) transform.

Book Publications du Laboratoire Jacques Louis Lions

Download or read book Publications du Laboratoire Jacques Louis Lions written by and published by . This book was released on 2007 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book In Search of the Riemann Zeros

Download or read book In Search of the Riemann Zeros written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2008 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.

Book Mathematical Study of the Betaplane Model

Download or read book Mathematical Study of the Betaplane Model written by Isabelle Gallagher and published by . This book was released on 2006 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors are interested in a model of rotating fluids, describing the motion of the ocean in the equatorial zone. This model is known as the Saint-Venant, or shallow-water type system, to which a rotation term is added whose amplitude is linear with respect to the latitude; in particular it vanishes at the equator. After a physical introduction to the model, the authors describe the various waves involved and study in detail the resonances associated to those waves. They then exhibit the formal limit system (as the rotation becomes large), obtained as usual by filtering out the waves, and prove its wellposedness. Finally they prove three types of convergence results: a weak convergence result towards a linear, geostrophic equation, a strong convergence result of the filtered solutions towards the unique strong solution to the limit system, and a ``hybrid'' strong convergence result of the filtered solutions towards a weak solution to the limit system. In particular the authors obtain that there are no confined equatorial waves in the mean motion as the rotation becomes large.

Book Coefficient Systems and Supersingular Representations of GL2 F

Download or read book Coefficient Systems and Supersingular Representations of GL2 F written by Vytautas Paskunas and published by . This book was released on 2004 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $F$ be a non-Archimedean local field with the residual characteristic $p$. The author constructs a good number of smooth irreducible $\overline {\mathbf {F}}_p$-representations of $\mathrm {GL}_2(F)$, which are supersingular in the sense of Barthel and Livne. If $F=\mathbf {Q}_p$ then results of Breuil imply that our construction gives all the supersingular representations up to the twist by an unramified quasi-character. The author conjectures that this is true for an arbitrary $F$. The book is suitable for graduate students and research mathematicians interested in algebra and algebraic geometry.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1524 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book M  moire

    Book Details:
  • Author :
  • Publisher :
  • Release : 2006
  • ISBN :
  • Pages : 546 pages

Download or read book M moire written by and published by . This book was released on 2006 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II

Download or read book Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II written by David Carfi and published by American Mathematical Soc.. This book was released on 2013-10-24 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.