Download or read book Spectral Finite Element Method written by Srinivasan Gopalakrishnan and published by Springer Science & Business Media. This book was released on 2007-12-05 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. Readers will gain understanding of how to formulate Spectral Finite Element; learn about wave behaviour in inhomogeneous and anisotropic media; and, be able to design some diagnostic tools for monitoring the health of a structure. Tables, figures and graphs support the theory and case studies are included.
Download or read book Introduction to Finite and Spectral Element Methods Using MATLAB written by Constantine Pozrikidis and published by CRC Press. This book was released on 2014-06-20 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating new topics and original material, Introduction to Finite and Spectral Element Methods Using MATLAB, Second Edition enables readers to quickly understand the theoretical foundation and practical implementation of the finite element method and its companion spectral element method. Readers gain hands-on computational experience by using
Download or read book Spectral Element Method in Structural Dynamics written by Usik Lee and published by John Wiley & Sons. This book was released on 2009-07-31 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral Element Method in Structural Dynamics is a concise and timely introduction to the spectral element method (SEM) as a means of solving problems in structural dynamics, wave propagations, and other related fields. The book consists of three key sections. In the first part, background knowledge is set up for the readers by reviewing previous work in the area and by providing the fundamentals for the spectral analysis of signals. In the second part, the theory of spectral element method is provided, focusing on how to formulate spectral element models and how to conduct spectral element analysis to obtain the dynamic responses in both frequency- and time-domains. In the last part, the applications of SEM to various structural dynamics problems are introduced, including beams, plates, pipelines, axially moving structures, rotor systems, multi-layered structures, smart structures, composite laminated structures, periodic lattice structures, blood flow, structural boundaries, joints, structural damage, and impact forces identifications, as well as the SEM-FEM hybrid method. Presents all aspects of SEM in one volume, both theory and applications Helps students and professionals master associated theories, modeling processes, and analysis methods Demonstrates where and how to apply SEM in practice Introduces real-world examples across a variety of structures Shows how models can be used to evaluate the accuracy of other solution methods Cross-checks against solutions obtained by conventional FEM and other solution methods Comes with downloadable code examples for independent practice Spectral Element Method in Structural Dynamics can be used by graduate students of aeronautical, civil, naval architectures, mechanical, structural and biomechanical engineering. Researchers in universities, technical institutes, and industries will also find the book to be a helpful reference highlighting SEM applications to various engineering problems in areas of structural dynamics, wave propagations, and other related subjects. The book can also be used by students, professors, and researchers who want to learn more efficient and more accurate computational methods useful for their research topics from all areas of engineering, science and mathematics, including the areas of computational mechanics and numerical methods.
Download or read book Stochastic Finite Elements A Spectral Approach written by Roger G. Ghanem and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.
Download or read book Computational Galerkin Methods written by C. A. J. Fletcher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the wake of the computer revolution, a large number of apparently uncon nected computational techniques have emerged. Also, particular methods have assumed prominent positions in certain areas of application. Finite element methods, for example, are used almost exclusively for solving structural problems; spectral methods are becoming the preferred approach to global atmospheric modelling and weather prediction; and the use of finite difference methods is nearly universal in predicting the flow around aircraft wings and fuselages. These apparently unrelated techniques are firmly entrenched in computer codes used every day by practicing scientists and engineers. Many of these scientists and engineers have been drawn into the computational area without the benefit offormal computational training. Often the formal computational training we do provide reinforces the arbitrary divisions between the various computational methods available. One of the purposes of this monograph is to show that many computational techniques are, indeed, closely related. The Galerkin formulation, which is being used in many subject areas, provides the connection. Within the Galerkin frame-work we can generate finite element, finite difference, and spectral methods.
Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Download or read book Spectral Methods in MATLAB written by Lloyd N. Trefethen and published by SIAM. This book was released on 2000-07-01 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.
Download or read book Computational Seismology written by Heiner Igel and published by Oxford University Press. This book was released on 2017 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.
Download or read book A Simple Introduction to the Mixed Finite Element Method written by Gabriel N. Gatica and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to provide a simple and accessible introduction to the mixed finite element method as a fundamental tool to numerically solve a wide class of boundary value problems arising in physics and engineering sciences. The book is based on material that was taught in corresponding undergraduate and graduate courses at the Universidad de Concepcion, Concepcion, Chile, during the last 7 years. As compared with several other classical books in the subject, the main features of the present one have to do, on one hand, with an attempt of presenting and explaining most of the details in the proofs and in the different applications. In particular several results and aspects of the corresponding analysis that are usually available only in papers or proceedings are included here.
Download or read book Partial Differential Equations and the Finite Element Method written by Pavel Ŝolín and published by John Wiley & Sons. This book was released on 2005-12-16 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.
Download or read book Implementing Spectral Methods for Partial Differential Equations written by David A. Kopriva and published by Springer Science & Business Media. This book was released on 2009-05-27 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Download or read book Spectral hp Element Methods for CFD written by George Karniadakis and published by Oxford University Press, USA. This book was released on 1999 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an essential reference for anyone interested in the use of spectral/hp element methods in fluid dynamics. It provides a comprehensive introduction to the field together with detailed examples of the methods to the incompressible and compressible Navier-Stokes equations.
Download or read book Higher Order Numerical Methods for Transient Wave Equations written by Gary Cohen and published by Springer Science & Business Media. This book was released on 2001-11-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Download or read book Spectral Methods in Surface Superconductivity written by Søren Fournais and published by Springer Science & Business Media. This book was released on 2010-06-15 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines in detail the nonlinear Ginzburg–Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg–Landau parameter kappa. Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.
Download or read book Numerical Analysis of Spectral Methods written by David Gottlieb and published by SIAM. This book was released on 1977-01-01 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.