Download or read book Computational Geometry written by Mark de Berg and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.
Download or read book Introduction to Algorithms third edition written by Thomas H. Cormen and published by MIT Press. This book was released on 2009-07-31 with total page 1313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.
Download or read book Geometry Intuitive Discrete and Convex written by Imre Bárány and published by Springer. This book was released on 2015-04-09 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is a collection of a dozen survey articles, dedicated to the memory of the famous Hungarian geometer, László Fejes Tóth, on the 99th anniversary of his birth. Each article reviews recent progress in an important field in intuitive, discrete, and convex geometry. The mathematical work and perspectives of all editors and most contributors of this volume were deeply influenced by László Fejes Tóth.
Download or read book Computational Geometry written by Franco P. Preparata and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Download or read book Algorithms written by Jeff Erickson and published by . This book was released on 2019-06-13 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms are the lifeblood of computer science. They are the machines that proofs build and the music that programs play. Their history is as old as mathematics itself. This textbook is a wide-ranging, idiosyncratic treatise on the design and analysis of algorithms, covering several fundamental techniques, with an emphasis on intuition and the problem-solving process. The book includes important classical examples, hundreds of battle-tested exercises, far too many historical digressions, and exaclty four typos. Jeff Erickson is a computer science professor at the University of Illinois, Urbana-Champaign; this book is based on algorithms classes he has taught there since 1998.
Download or read book Practical Methods of Optimization written by R. Fletcher and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.
Download or read book Geometric and Topological Inference written by Jean-Daniel Boissonnat and published by Cambridge University Press. This book was released on 2018-09-27 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.
Download or read book Persistence Theory From Quiver Representations to Data Analysis written by Steve Y. Oudot and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.
Download or read book The Algorithmic Foundations of Differential Privacy written by Cynthia Dwork and published by . This book was released on 2014 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.
Download or read book Combinatorial and Computational Geometry written by Jacob E. Goodman and published by Cambridge University Press. This book was released on 2005-08-08 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Download or read book Frontiers of Multimedia Research written by Shih-Fu Chang and published by Morgan & Claypool. This book was released on 2018-01-03 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of multimedia is unique in offering a rich and dynamic forum for researchers from “traditional” fields to collaborate and develop new solutions and knowledge that transcend the boundaries of individual disciplines. Despite the prolific research activities and outcomes, however, few efforts have been made to develop books that serve as an introduction to the rich spectrum of topics covered by this broad field. A few books are available that either focus on specific subfields or basic background in multimedia. Tutorial-style materials covering the active topics being pursued by the leading researchers at frontiers of the field are currently lacking. In 2015, ACM SIGMM, the special interest group on multimedia, launched a new initiative to address this void by selecting and inviting 12 rising-star speakers from different subfields of multimedia research to deliver plenary tutorial-style talks at the ACM Multimedia conference for 2015. Each speaker discussed the challenges and state-of-the-art developments of their prospective research areas in a general manner to the broad community. The covered topics were comprehensive, including multimedia content understanding, multimodal human-human and human-computer interaction, multimedia social media, and multimedia system architecture and deployment. Following the very positive responses to these talks, the speakers were invited to expand the content covered in their talks into chapters that can be used as reference material for researchers, students, and practitioners. Each chapter discusses the problems, technical challenges, state-of-the-art approaches and performances, open issues, and promising direction for future work. Collectively, the chapters provide an excellent sampling of major topics addressed by the community as a whole. This book, capturing some of the outcomes of such efforts, is well positioned to fill the aforementioned needs in providing tutorial-style reference materials for frontier topics in multimedia. At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too. This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing. We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective. This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.
Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Download or read book Knowledge Graphs written by Aidan Hogan and published by Morgan & Claypool Publishers. This book was released on 2021-11-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
Download or read book Research Problems in Discrete Geometry written by Peter Brass and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
Download or read book Spatial Databases written by Philippe Rigaux and published by Morgan Kaufmann. This book was released on 2002 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors explore and explain current techniques for handling the specialised data that describes geographical phenomena in a study that will be of great value to computer scientists and geographers working with spatial databases.
Download or read book Genetic Algorithms in Search Optimization and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
Download or read book Geometric Spanner Networks written by Giri Narasimhan and published by Cambridge University Press. This book was released on 2007-01-08 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at an audience of researchers and graduate students in computational geometry and algorithm design, this book uses the Geometric Spanner Network Problem to showcase a number of useful algorithmic techniques, data structure strategies, and geometric analysis techniques with many applications, practical and theoretical. The authors present rigorous descriptions of the main algorithms and their analyses for different variations of the Geometric Spanner Network Problem. Though the basic ideas behind most of these algorithms are intuitive, very few are easy to describe and analyze. For most of the algorithms, nontrivial data structures need to be designed, and nontrivial techniques need to be developed in order for analysis to take place. Still, there are several basic principles and results that are used throughout the book. One of the most important is the powerful well-separated pair decomposition. This decomposition is used as a starting point for several of the spanner constructions.