Download or read book Nonlinear Economic Dynamics and Financial Modelling written by Roberto Dieci and published by Springer. This book was released on 2014-07-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the state of the art on nonlinear economic dynamics, financial market modelling and quantitative finance. It contains eighteen papers with topics ranging from disequilibrium macroeconomics, monetary dynamics, monopoly, financial market and limit order market models with boundedly rational heterogeneous agents to estimation, time series modelling and empirical analysis and from risk management of interest-rate products, futures price volatility and American option pricing with stochastic volatility to evaluation of risk and derivatives of electricity market. The book illustrates some of the most recent research tools in these areas and will be of interest to economists working in economic dynamics and financial market modelling, to mathematicians who are interested in applying complexity theory to economics and finance and to market practitioners and researchers in quantitative finance interested in limit order, futures and electricity market modelling, derivative pricing and risk management.
Download or read book Bayesian Econometrics written by Siddhartha Chib and published by Emerald Group Publishing. This book was released on 2008-12-18 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates the scope and diversity of modern applications, reviews advances, and highlights many desirable aspects of inference and computations. This work presents an historical overview that describes key contributions to development and makes predictions for future directions.
Download or read book Nonlinear Modeling of Economic and Financial Time Series written by Fredj Jawadi and published by Emerald Group Publishing. This book was released on 2010-12-17 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents researches in linear and nonlinear modelling of economic and financial time-series. This book provides a comprehensive understanding of financial and economic dynamics in various aspects using modern financial econometric methods. It also presents and discusses research findings and their implications.
Download or read book Optimization in Economics and Finance written by Bruce D. Craven and published by Springer Science & Business Media. This book was released on 2005-10-24 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some recent developments in the mathematics of optimization, including the concepts of invexity and quasimax, have not yet been applied to models of economic growth, and to finance and investment. Their applications to these areas are shown in this book.
Download or read book Nonlinear Time Series Analysis of Economic and Financial Data written by Philip Rothman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Download or read book Neural Networks and the Financial Markets written by Jimmy Shadbolt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at financial prediction from a broad range of perspectives. It covers: - the economic arguments - the practicalities of the markets - how predictions are used - how predictions are made - how predictions are turned into something usable (asset locations) It combines a discussion of standard theory with state-of-the-art material on a wide range of information processing techniques as applied to cutting-edge financial problems. All the techniques are demonstrated with real examples using actual market data, and show that it is possible to extract information from very noisy, sparse data sets. Aimed primarily at researchers in financial prediction, time series analysis and information processing, this book will also be of interest to quantitative fund managers and other professionals involved in financial prediction.
Download or read book The Econometrics of Financial Markets written by John Y. Campbell and published by Princeton University Press. This book was released on 2012-06-28 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past twenty years have seen an extraordinary growth in the use of quantitative methods in financial markets. Finance professionals now routinely use sophisticated statistical techniques in portfolio management, proprietary trading, risk management, financial consulting, and securities regulation. This graduate-level textbook is intended for PhD students, advanced MBA students, and industry professionals interested in the econometrics of financial modeling. The book covers the entire spectrum of empirical finance, including: the predictability of asset returns, tests of the Random Walk Hypothesis, the microstructure of securities markets, event analysis, the Capital Asset Pricing Model and the Arbitrage Pricing Theory, the term structure of interest rates, dynamic models of economic equilibrium, and nonlinear financial models such as ARCH, neural networks, statistical fractals, and chaos theory. Each chapter develops statistical techniques within the context of a particular financial application. This exciting new text contains a unique and accessible combination of theory and practice, bringing state-of-the-art statistical techniques to the forefront of financial applications. Each chapter also includes a discussion of recent empirical evidence, for example, the rejection of the Random Walk Hypothesis, as well as problems designed to help readers incorporate what they have read into their own applications.
Download or read book Modelling Financial Time Series written by Stephen J. Taylor and published by World Scientific. This book was released on 2008 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.
Download or read book Complex Systems in Finance and Econometrics written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Download or read book Modeling Financial Time Series with S PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Download or read book State Space Models written by Yong Zeng and published by Springer Science & Business Media. This book was released on 2013-08-15 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-space models as an important mathematical tool has been widely used in many different fields. This edited collection explores recent theoretical developments of the models and their applications in economics and finance. The book includes nonlinear and non-Gaussian time series models, regime-switching and hidden Markov models, continuous- or discrete-time state processes, and models of equally-spaced or irregularly-spaced (discrete or continuous) observations. The contributed chapters are divided into four parts. The first part is on Particle Filtering and Parameter Learning in Nonlinear State-Space Models. The second part focuses on the application of Linear State-Space Models in Macroeconomics and Finance. The third part deals with Hidden Markov Models, Regime Switching and Mathematical Finance and the fourth part is on Nonlinear State-Space Models for High Frequency Financial Data. The book will appeal to graduate students and researchers studying state-space modeling in economics, statistics, and mathematics, as well as to finance professionals.
Download or read book Nonlinear Time Series written by Jiti Gao and published by CRC Press. This book was released on 2007-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully
Download or read book Econophysics and Financial Economics written by Franck Jovanovic and published by Oxford University Press. This book was released on 2017 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first extensive analytic comparison between models and results from econophysics and financial economics in an accessible and common vocabulary. Unlike other publications dedicated to econophysics, it situates this field in the evolution of financial economics by laying the foundations for common theoretical framework and models.
Download or read book Commodity Modeling and Pricing written by Peter V. Schaeffer and published by John Wiley & Sons. This book was released on 2008-12-03 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commodity Modeling and Pricing provides extensions and applications of state-of-the-art methods for analyzing resource commodity behavior. Drawing from the seminal work of Professor Walter Labys on the development of econometric methods for forecasting commodity prices, this collection of essays features expert contributors ranging from practitioners in private industry, public sector, and nongovernmental organizations to scholars in higher education–all of whom were Labys's former students or collaborators. Filled with in-depth insights and expert advice, Commodity Modeling and Pricing contains the information you need to excel in this demanding environment.
Download or read book Linear Models and Time Series Analysis written by Marc S. Paolella and published by John Wiley & Sons. This book was released on 2018-12-17 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Download or read book Researching Social and Economic Change written by David Rose and published by Psychology Press. This book was released on 2000 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a guide to the purposes and potential of one of the most significant national and increasingly international resources for analyzing social change. It explains the possibilities and pitfalls in the analysis of panel study data.