Download or read book Advances in Machine Learning Research and Application 2012 Edition written by and published by ScholarlyEditions. This book was released on 2012-12-26 with total page 1934 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Machine Learning. The editors have built Advances in Machine Learning Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Machine Learning in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Pathological Brain Detection written by Shui-Hua Wang and published by Springer. This book was released on 2018-07-20 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides detailed practical guidelines on how to develop an efficient pathological brain detection system, reflecting the latest advances in the computer-aided diagnosis of structural magnetic resonance brain images. Matlab codes are provided for most of the functions described. In addition, the book equips readers to easily develop the pathological brain detection system further on their own and apply the technologies to other research fields, such as Alzheimer’s detection, multiple sclerosis detection, etc.
Download or read book Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices written by Manan Suri and published by Springer. This book was released on 2017-01-21 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
Download or read book Algorithms Advances in Research and Application 2012 Edition written by and published by ScholarlyEditions. This book was released on 2012-12-26 with total page 2152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Algorithms. The editors have built Algorithms—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Algorithms in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Algorithms—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Flood Forecasting Using Machine Learning Methods written by Fi-John Chang and published by MDPI. This book was released on 2019-02-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.
Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.
Download or read book Large scale Kernel Machines written by Léon Bottou and published by MIT Press. This book was released on 2007 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov
Download or read book Machine Learning Techniques for Space Weather written by Enrico Camporeale and published by Elsevier. This book was released on 2018-05-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Download or read book Photonic Reservoir Computing written by Daniel Brunner and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonics has long been considered an attractive substrate for next generation implementations of machine-learning concepts. Reservoir Computing tremendously facilitated the realization of recurrent neural networks in analogue hardware. This concept exploits the properties of complex nonlinear dynamical systems, giving rise to photonic reservoirs implemented by semiconductor lasers, telecommunication modulators and integrated photonic chips.
Download or read book Smart Energy for Transportation and Health in a Smart City written by Chun Sing Lai and published by John Wiley & Sons. This book was released on 2022-11-21 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smart Energy for Transportation and Health in a Smart City A comprehensive review of the advances of smart cities’ smart energy, transportation, infrastructure, and health Smart Energy for Transportation and Health in a Smart City offers an essential guide to the functions, characteristics, and domains of smart cities and the energy technology necessary to sustain them. The authors—noted experts on the topic—include theoretical underpinnings, practical information, and potential benefits for the development of smart cities. The book includes information on various financial models of energy storage, the management of networked micro-grids, coordination of virtual energy storage systems, reliability modeling and assessment of cyber space, and the development of a vehicle-to-grid voltage support. The authors review smart transportation elements such as advanced metering infrastructure for electric vehicle charging, power system dispatching with plug-in hybrid electric vehicles, and best practices for low power wide area network technologies. In addition, the book explores smart health that is based on the Internet of Things and smart devices that can help improve patient care processes and decrease costs while maintaining quality. This important resource: Examines challenges and opportunities that arise with the development of smart cities Presents state-of-the-art financial models of smart energy storage Clearly explores elements of a smart city based on the advancement of information and communication technology Contains a review of advances in smart health for smart cities Includes a variety of real-life case studies that illustrate various components of a smart city Written for practicing engineers and engineering students, Smart Energy for Transportation and Health in Smart Cities offers a practical guide to the various aspects that create a sustainable smart city.
Download or read book Multimedia Information Systems written by V.S. Subrahmanian and published by Springer Science & Business Media. This book was released on 1998-06-30 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multimedia Information Systems brings together in one place important contributions and up-to-date research results in this fast moving area. Multimedia Information Systems serves as an excellent reference, providing insight into some of the most challenging research issues in the field.
Download or read book Big Data Analytics for Sensor Network Collected Intelligence written by Hui-Huang Hsu and published by Morgan Kaufmann. This book was released on 2017-02-02 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
Download or read book Advanced Machine Vision Paradigms for Medical Image Analysis written by Tapan K. Gandhi and published by Academic Press. This book was released on 2020-08-11 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis
Download or read book Implementation of Sensors and Artificial Intelligence for Environmental Hazards Assessment in Urban Agriculture and Forestry Systems written by Sigfredo Fuentes and published by Mdpi AG. This book was released on 2022-01-21 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implementation of artificial intelligence (AI), together with robotics, sensors, sensor networks, Internet of Things (IoT), and machine/deep learning modeling, has reached the forefront of research activities, moving towards the goal of increasing the efficiency in a multitude of applications and purposes related to environmental sciences. The development and deployment of AI tools requires specific considerations, approaches, and methodologies for their effective and accurate applications. This Special Issue focused on the applications of AI to environmental systems related to hazard assessment in urban, agriculture, and forestry areas.
Download or read book Thermal Infrared Remote Sensing written by Claudia Kuenzer and published by Springer Science & Business Media. This book was released on 2013-06-17 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techniques for analyzing thermal data. Ground-breaking chapters on applications present a wide variety of case studies leading to a deepened understanding of land and sea surface temperature dynamics, urban heat island effects, forest fires, volcanic eruption precursors, underground coal fires, geothermal systems, soil moisture variability, and temperature-based mineral discrimination. ‘Thermal Infrared Remote Sensing: Sensors, Methods, Applications’ is unique because of the large field it spans, the potentials it reveals, and the detail it provides. This book is an indispensable volume for scientists, lecturers, and decision makers interested in thermal infrared technology, methods, and applications.
Download or read book Smart Sensors and Devices in Artificial Intelligence written by Dan Zhang and published by MDPI. This book was released on 2021-04-07 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensors are the eyes or/and ears of an intelligent system, such as UAV, AGV and robots. With the development of material, signal processing, and multidisciplinary interactions, more and more smart sensors are proposed and fabricated under increasing demands for homes, the industry, and military fields. Networks of sensors will be able to enhance the ability to obtain huge amounts of information (big data) and improve precision, which also mirrors the developmental tendency of modern sensors. Moreover, artificial intelligence is a novel impetus for sensors and networks, which gets sensors to learn and think and feed more efficient results back. This book includes new research results from academia and industry, on the subject of “Smart Sensors and Networks”, especially sensing technologies utilizing Artificial Intelligence. The topics include: smart sensors biosensors sensor network sensor data fusion artificial intelligence deep learning mechatronics devices for sensors applications of sensors for robotics and mechatronics devices
Download or read book Machine Learning for Spatial Environmental Data written by Mikhail Kanevski and published by EPFL Press. This book was released on 2009-06-09 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acompanyament de CD-RM conté MLO software, la guia d'MLO (pdf) i exemples de dades.