Download or read book Advances in Mathematical Inequalities and Applications written by Praveen Agarwal and published by Springer. This book was released on 2018-12-31 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.
Download or read book Advanced Numerical Methods for Differential Equations written by Harendra Singh and published by CRC Press. This book was released on 2021-07-29 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.
Download or read book Recent Advances in Differential Equations and Applications written by Juan Luis García Guirao and published by Springer. This book was released on 2019-01-04 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.
Download or read book Special Functions and Analysis of Differential Equations written by Praveen Agarwal and published by CRC Press. This book was released on 2020-09-08 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.
Download or read book Boundary Value Problems For Fractional Differential Equations And Systems written by Bashir Ahmad and published by World Scientific. This book was released on 2021-02-18 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of existence of solutions or positive solutions for various classes of Riemann-Liouville and Caputo fractional differential equations, and systems of fractional differential equations subject to nonlocal boundary conditions. The monograph draws together many of the authors' results, that have been obtained and highly cited in the literature in the last four years.In each chapter, various examples are presented which support the main results. The methods used in the proof of these theorems include results from the fixed point theory and fixed point index theory. This volume can serve as a good resource for mathematical and scientific researchers, and for graduate students in mathematics and science interested in the existence of solutions for fractional differential equations and systems.
Download or read book Differential and Integral Inequalities written by Wolfgang Walter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1964 the author's mono graph "Differential- und Integral-Un gleichungen," with the subtitle "und ihre Anwendung bei Abschätzungs und Eindeutigkeitsproblemen" was published. The present volume grew out of the response to the demand for an English translation of this book. In the meantime the literature on differential and integral in equalities increased greatly. We have tried to incorporate new results as far as possible. As a matter of fact, the Bibliography has been almost doubled in size. The most substantial additions are in the field of existence theory. In Chapter I we have included the basic theorems on Volterra integral equations in Banach space (covering the case of ordinary differential equations in Banach space). Corresponding theorems on differential inequalities have been added in Chapter II. This was done with a view to the new sections; dealing with the line method, in the chapter on parabolic differential equations. Section 35 contains an exposition of this method in connection with estimation and convergence. An existence theory for the general nonlinear parabolic equation in one space variable based on the line method is given in Section 36. This theory is considered by the author as one of the most significant recent applications of in equality methods. We should mention that an exposition of Krzyzanski's method for solving the Cauchy problem has also been added. The numerous requests that the new edition include a chapter on elliptic differential equations have been satisfied to some extent.
Download or read book Advances in Applied Mathematics and Approximation Theory written by George A. Anastassiou and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT 2012 is a collection of the best articles presented at “Applied Mathematics and Approximation Theory 2012,” an international conference held in Ankara, Turkey, May 17-20, 2012. This volume brings together key work from authors in the field covering topics such as ODEs, PDEs, difference equations, applied analysis, computational analysis, signal theory, positive operators, statistical approximation, fuzzy approximation, fractional analysis, semigroups, inequalities, special functions and summability. The collection will be a useful resource for researchers in applied mathematics, engineering and statistics.
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Download or read book Hardy Inequalities on Homogeneous Groups written by Michael Ruzhansky and published by Springer. This book was released on 2019-07-02 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Download or read book Functional Equations and Inequalities written by Themistocles RASSIAS and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums, decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problems of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszú's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. Audience: This book will be of interest to mathematicians and graduate students whose work involves real functions, functions of a complex variable, functional analysis, integral transforms, and operational calculus.
Download or read book Ordinary and Partial Differential Equations written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2008-11-13 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
Download or read book Differential and Integral Inequalities written by Dorin Andrica and published by Springer Nature. This book was released on 2019-11-14 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.
Download or read book Advanced Inequalities written by George A. Anastassiou and published by World Scientific. This book was released on 2011 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and HardyOpial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and applications as well as ChebyshevGruss, Gruss and Comparison of Means inequalities are studied. The results presented are mostly optimal, that is the inequalities are sharp and attained. Applications in many areas of pure and applied mathematics, such as mathematical analysis, probability, ordinary and partial differential equations, numerical analysis, information theory, etc., are explored in detail, as such this monograph is suitable for researchers and graduate students. It will be a useful teaching material at seminars as well as an invaluable reference source in all science libraries.
Download or read book Integral Methods in Science and Engineering written by Christian Constanda and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.
Download or read book Research in Progress written by and published by . This book was released on 1978 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.