EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Space time Discontinuous Galerkin Finite Element Method for Two fluid Flows

Download or read book Space time Discontinuous Galerkin Finite Element Method for Two fluid Flows written by Warnerius Egbert Hendrikus Sollie and published by . This book was released on 2010 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Discontinuous Galerkin Method

Download or read book Discontinuous Galerkin Method written by Vít Dolejší and published by Springer. This book was released on 2015-07-17 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

Book Geometric Analysis and Nonlinear Partial Differential Equations

Download or read book Geometric Analysis and Nonlinear Partial Differential Equations written by Stefan Hildebrandt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.

Book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Download or read book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer written by Ben Q. Li and published by Springer Science & Business Media. This book was released on 2005-12-20 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.

Book Space Time Methods

    Book Details:
  • Author : Ulrich Langer
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2019-09-23
  • ISBN : 3110548488
  • Pages : 261 pages

Download or read book Space Time Methods written by Ulrich Langer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-09-23 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.

Book Design and Analysis of Space time and Galerkin least squares Finite Element Methods for Fluid structure Interaction in Exterior Domains

Download or read book Design and Analysis of Space time and Galerkin least squares Finite Element Methods for Fluid structure Interaction in Exterior Domains written by Stanford University. Division of Applied Mechanics. Division of Applied Mechanics and published by . This book was released on 1994 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems

Download or read book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems written by Bernardo Cockburn and published by . This book was released on 2000 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Courant   Friedrichs   Lewy  CFL  Condition

Download or read book The Courant Friedrichs Lewy CFL Condition written by Carlos A. de Moura and published by Springer Science & Business Media. This book was released on 2012-10-28 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods.

Book Geometrically Unfitted Finite Element Methods and Applications

Download or read book Geometrically Unfitted Finite Element Methods and Applications written by Stéphane P. A. Bordas and published by Springer. This book was released on 2018-03-13 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.

Book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows

Download or read book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows written by J. J. W. van der Vegt and published by . This book was released on 1998 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Space time Finite Element Method for Fluid structure Interaction

Download or read book A Space time Finite Element Method for Fluid structure Interaction written by Arif Masud and published by . This book was released on 1993 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Space time Discontinuous Petrov Galerkin Finite Elements for Transient Fluid Mechanics

Download or read book Space time Discontinuous Petrov Galerkin Finite Elements for Transient Fluid Mechanics written by Truman Everett Ellis and published by . This book was released on 2016 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Initial mesh design for computational fluid dynamics can be a time-consuming and expensive process. The stability properties and nonlinear convergence of most numerical methods rely on a minimum level of mesh resolution. This means that unless the initial computational mesh is fine enough, convergence can not be guaranteed. Any meshes below this minimum resolution level are termed to be in the ``pre-asymptotic regime.'' This condition implies that meshes need to in some way anticipate the solution before it is known. On top of the minimum requirement that the surface meshes must adequately represent the geometry of the problem under consideration, resolution requirements on the volume mesh make the CFD practitioner's job significantly more time consuming. In contrast to most other numerical methods, the discontinuous Petrov-Galerkin finite element method retains exceptional stability on extremely coarse meshes. DPG is also inherently very adaptive. It is possible to compute the residual error without knowledge of the exact solution, which can be used to robustly drive adaptivity. This results in a very automated technology, as the user can initialize a computation on the coarsest mesh which adequately represents the geometry then step back and let the program solve and adapt iteratively until it resolves the solution features. A common complaint of minimum residual methods by computational fluid dynamics practitioners is that they are not locally conservative. In this thesis, this concern is addressed by developing a locally conservative DPG formulation by augmenting the system with Lagrange multipliers. The resulting DPG formulation is then proved to be robust and shown to produce superior numerical results over standard DPG on a selection of test problems. Adaptive convergence to steady incompressible and compressible Navier-Stokes solutions was explored in Jesse Chan's and Nathan Roberts' dissertations. Space-time offers a natural extension to transient problems as it preserves the stability and adaptivity properties of DPG in the time dimension. Space-time also offers more extensive parallelization capability than problems treated with traditional time stepping as it allows multigrid concurrently in both space and time. A proof of concept space-time DPG formulation is developed for transient convection-diffusion. The robust test norms derived for steady convection-diffusion are extended to the space-time case and proofs of robustness are provided. Numerical results verify the robust behavior and near $L^2$ optimality of the resulting solutions. The space-time formulation for convection-diffusion is then extended to transient incompressible and compressible Navier-Stokes by analogy. Several numerical experiments are performed, but a mathematical analysis is not attempted for these nonlinear problems. Several side topics are explored such as a study of the compressible Navier-Stokes equations under various variable transformations and the development of consistent test norms through the concept of physical entropy.

Book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows

Download or read book Space time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows written by J. J. W. van der Vegt and published by . This book was released on 2002 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Order Methods for Computational Physics

Download or read book High Order Methods for Computational Physics written by Timothy J. Barth and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.