EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Soot Formation in Propane air Laminar Diffusion Flames at Elevated Pressures  microform

Download or read book Soot Formation in Propane air Laminar Diffusion Flames at Elevated Pressures microform written by Decio S. (Decio Santos) Bento and published by Library and Archives Canada = Bibliothèque et Archives Canada. This book was released on 2005 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laminar axisymmetric propane air diffusion flames were studied at pressures 0.1 to 0.725 MPa (1 to 7.25 atm). To investigate the effect of pressure on soot formation, radially resolved soot temperatures and soot volume fractions were deduced from soot radiation emission scans collected at various pressures using spectral soot emission (SSE). Overall flame stability was quite good as judged by the naked eye. Flame heights varied by 15% and flame axial diameters decreased by 30% over the entire pressure range.Analysis of temperature sensitivity to variations in E lambda(m) revealed that a change in E lambda(m) of +/-20% produced a change in local temperature values of about 75 to 100 K or about 5%.Temperatures decreased and soot concentration increased with increased pressure. More specifically, the peak soot volume fraction showed a power law dependence, fv ∝ Pn where n = 2.0 over the entire pressure range. The maximum integrated soot volume fraction also showed a power law relationship with pressure, f ̄v ∝ Pn where n = 3.4 for 1 ≤ P ≤ 2 atm and n = 1.4 for 2 ≤ P ≤ 7.25 atm. The percentage of fuel carbon converted to soot increased with pressure at a rate, etas ∝ Pn where n = 3.3 and n = 1.1 for 1 ≤ P ≤ 2 atm and 2 ≤ P ≤ 7.25 atm respectively.

Book Effects of Elevated Pressure on Soot Formation in Laminar Diffusion Flames

Download or read book Effects of Elevated Pressure on Soot Formation in Laminar Diffusion Flames written by L. L. McCrain and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Soot Formation in Ethane air Coflow Laminar Diffusion Flames at Elevated Pressures

Download or read book Soot Formation in Ethane air Coflow Laminar Diffusion Flames at Elevated Pressures written by Paul Michael Mandatori and published by . This book was released on 2006 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ethane-air laminar coflow non-smoking diffusion flames have been studied at pressures up to 3.34 MPa to determine the effect of pressure on soot formation, flame temperatures and physical flame properties. The spectral soot emission (SSE) diagnostic was used to obtain spatially resolved (both radially and axially) soot volume fraction and soot temperature measurements at pressures of 0.20 to 3.34 MPa. In general, temperature profiles of a given height were found to decrease with increasing pressure. Pressure was found to enhance soot formation with decreased sensitivity as pressures were increased. A power law relation between maximum soot volume fraction and pressure was found to be fvmax & prop;P 2.39 for 0.20 & le; P & le; 1.52 MPa and fvmax & prop;P 1.10 for 1.52 & le; P & le; 3.34 MPa. The integrated line-of-sight soot volume fraction was found to vary as fvline, max & prop;P 2.32 for 0.20 & le; P & le; 0.51 MPa, fvline, max & prop;P 1.44 for 0.51 & le; P & le; 1.52 MPa and fvline, max & prop;P 0.95 for 1.52 & le; P & le; 3.34 MPa. The variation of maximum carbon conversion to soot, as a percentage of the fuel's carbon, was etas, max & prop; P2.23 for 0.20 & le; P & le; 1.13 MPa, etas, max & prop; P1.12 for 0.51 & le; P & le; 1.52 MPa and etas, max & prop; P0.41 for 1.52 & le; P & le; 3.34 MPa. The maximum value of carbon conversion was found to be eta s, max = 27.61% at P = 3.34 MPa.

Book Soot Formation in Non premixed Laminar Flames at Subcritical and Supercritical Pressures

Download or read book Soot Formation in Non premixed Laminar Flames at Subcritical and Supercritical Pressures written by Hyun Il Joo and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximum carbon conversion to soot is approximately 6.5 % at 30 atm and remained constant at higher pressures.

Book Soot Formation in Laminar Jet Diffusion Flames at Elevated Pressures

Download or read book Soot Formation in Laminar Jet Diffusion Flames at Elevated Pressures written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Pressure Soot Formation in Non smoking Methane air Laminar Diffusion Flames from 1 5 MPa to 6 0 MPa

Download or read book High Pressure Soot Formation in Non smoking Methane air Laminar Diffusion Flames from 1 5 MPa to 6 0 MPa written by Marie Emma Vaillancourt and published by . This book was released on 2006 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measurements of soot concentration, flame temperature and flame geometry have been recorded for non-smoking methane-air laminar diffusion flames at pressures from P = 1.5 MPa to P = 6.0 MPa. Soot concentration and temperature profiles were obtained using the spectral soot emission diagnostic method and the Abel inversion deconvolution technique. Visual inspection and measurement of the flame revealed a slight increase in height and decrease in cross-section with increasing pressure. Soot volume fraction increased with pressure according to fv max & prop; P1.4 for 1.5 & le; P & le; 5.0 MPa. The maximum carbon conversion to soot was related to pressure following the relationship eta s, max & prop; P0.55 for 1.5 & le; P & le; 5.0 MPa. The maximum value of carbon converted to soot was etas, max = 10.1% at P = 5.0 MPa. The maximum soot concentration was always found at a height approximately half way between the burner and the flame tip. The temperature was lower in high soot loading regions of the flame. For the same height in the flame, temperature decreased with increasing pressure.

Book Soot Formation in Non premixed Laminar Flames at Subcritical and Supercritical Pressures

Download or read book Soot Formation in Non premixed Laminar Flames at Subcritical and Supercritical Pressures written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximu.

Book Numerical Modelling of Sooting Laminar Diffusion Flames at Elevated Pressures and Microgravity

Download or read book Numerical Modelling of Sooting Laminar Diffusion Flames at Elevated Pressures and Microgravity written by Marc Robert Joseph Charest and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Pressure on Soot Formation in Laminar Diffusion Flames

Download or read book Effect of Pressure on Soot Formation in Laminar Diffusion Flames written by Adel Maurice Iskander and published by . This book was released on 1987 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Soot Formation in Laminar Jet Diffusion Flames

Download or read book Soot Formation in Laminar Jet Diffusion Flames written by Peter Bradford Sunderland and published by . This book was released on 1995 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame

Download or read book The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Soot volume fraction (f[subscript sv]) is measured quantitatively in a laminar diffusion flame at elevated pressures up to 25 atmospheres as a function of fuel type in order to gain a better understanding of the effects of pressure on the soot formation process. Methane and ethylene are used as fuels; methane is chosen since it is the simplest hydrocarbon while ethylene represents a larger hydrocarbon with a higher propensity to soot. Soot continues to be of interest because it is a sensitive indicator of the interactions between combustion chemistry and fluid mechanics and a known pollutant. To examine the effects of increased pressure on soot formation, Laser Induced Incandescence (LII) is used to obtain the desired temporally and spatially resolved, instantaneous f[subscript sv] measurements as the pressure is incrementally increased up to 25 atmospheres. The effects of pressure on the physical characteristics of the flame are also observed. A laser light extinction method that accounts for signal trapping and laser attenuation is used for calibration that results in quantitative results. The local peak f[subscript sv] is found to scale with pressure as p[superscript 1.2] for methane and p[superscript 1.7] for ethylene.

Book Soot Formation in Annular Non premixed Laminar Flames of Methane air at Pressures of 0 1 to 4 0 MPa  microform

Download or read book Soot Formation in Annular Non premixed Laminar Flames of Methane air at Pressures of 0 1 to 4 0 MPa microform written by Kevin Austen Thomson and published by Library and Archives Canada = Bibliothèque et Archives Canada. This book was released on 2004 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame

Download or read book The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame written by Laura Lynne McCrain and published by . This book was released on 2003 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keywords: diffusion flame, high pressure, soot formation.