Download or read book Semigroups of Operators Theory and Applications written by Jacek Banasiak and published by Springer. This book was released on 2014-11-20 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator theory. Nowadays, it still has the same distinctive flavour: it develops rapidly by posing new ‘internal’ questions and in answering them, discovering new methods that can be used in applications. On the other hand, it is influenced by questions from PDEs and stochastic processes as well as from applied sciences such as mathematical biology and optimal control, and thus it continually gathers a new momentum. Researchers and postgraduate students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimization and optimal control will find this volume useful.
Download or read book Piecewise Deterministic Processes in Biological Models written by Ryszard Rudnicki and published by Springer. This book was released on 2017-07-20 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological proc esses into a unified mathematical theory, and to arrive at revealing biological conclusions. The target audience primarily comprises of researchers in these two fields, but the book will also benefit graduate students.
Download or read book Stochastic Ferromagnetism written by Lubomir Banas and published by Walter de Gruyter. This book was released on 2013-12-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). The first part of the book studies the role of noise in finite ensembles of nanomagnetic particles: we show geometric ergodicity of a unique invariant measure of Gibbs type and study related properties of approximations of the SLLG, including time discretization and Ginzburg-Landau type penalization. In the second part we propose an implementable space-time discretization using random walks to construct a weak martingale solution of the corresponding stochastic partial differential equation which describes the magnetization process of infinite spin ensembles. The last part of the book is concerned with a macroscopic deterministic equation which describes temperature effects on macro-spins, i.e. expectations of the solutions to the SLLG. Furthermore, comparative computational studies with the stochastic model are included. We use constructive tools such as e.g. finite element methods to derive the theoretical results, which are then used for computational studies. The numerical experiments motivate an interesting interplay between inherent geometric and stochastic effects of the SLLG which still lack a rigorous analytical understanding: the role of space-time white noise, possible finite time blow-up behavior of solutions, long-time asymptotics, and effective dynamics.
Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Download or read book Stochastic Models for Spike Trains of Single Neurons written by S.K. Srinivasan and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic deletion model 45 5. 1. 2 Higher-order properties of the sequence of r-events 55 5. 1. 3 Extended version of Model 5. 1 - Model 60 5. 2 5. 2 Models with dependent interaction of excitatory and inhibitory sequences - MOdels 5. 3 and 5.
Download or read book Stochastic Processes in the Neurosciences written by Henry C. Tuckwell and published by SIAM. This book was released on 1989-01-01 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is centered on quantitative analysis of nerve-cell behavior. The work is foundational, with many higher order problems still remaining, especially in connection with neural networks. Thoroughly addressed topics include stochastic problems in neurobiology, and the treatment of the theory of related Markov processes.
Download or read book Electrical Engineering Transactions written by and published by . This book was released on 1969 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Connectionist Models of Neurons Learning Processes and Artificial Intelligence written by Jose Mira and published by Springer Science & Business Media. This book was released on 2001-06-05 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes, together with its companion, LNCS 2085, the refereed proceedings of the 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001, held in Granada, Spain, in June 2001. The 200 revised papers presented were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in sections on foundations of connectionism, biophysical models of neurons, structural and functional models of neurons, learning and other plasticity phenomena, complex systems dynamics, artificial intelligence and congnitive processes, methodology for nets design, nets simulation and implementation, bio-inspired systems and engineering, and other applications in a variety of fields.
Download or read book Stochastic Neuron Models written by Priscilla E. Greenwood and published by Springer. This book was released on 2016-02-02 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain Research Centre at the University of British Columbia.
Download or read book Stochastic Methods in Biology written by Motoo Kimura and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis cipline with its own repertoire of techniques. The purpose of the Workshop on sto chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important feature of the Workshop and one of the reasons for organizing it has been the fact that the theory of stochastic differential equations (SDE's) has found a rich source of new problems in the fields of population genetics and neuro biology. This is especially so for the relatively new and growing area of infinite dimensional, i. e. , measure-valued or distribution-valued SDE's. The papers in II and III and some of the papers in the remaining categories represent these areas.
Download or read book The Noisy Brain written by Edmund T. Rolls and published by . This book was released on 2010-01-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The activity of neurons in the brain is noisy in that the neuronal firing times are random for a given mean rate. The Noisy Brain shows that this is fundamental to understanding many aspects of brain function, including probabilistic decision-making, perception, memory recall, short-term memory, attention, and even creativity. There are many applications too of this understanding, to for example memory and attentional disorders, aging, schizophrenia, and obsessive-compulsive disorder.
Download or read book Mathematics for Neuroscientists written by Fabrizio Gabbiani and published by Academic Press. This book was released on 2017-02-04 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts
Download or read book Stochastic Biomathematical Models written by Mostafa Bachar and published by Springer. This book was released on 2012-10-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.
Download or read book Neural Networks written by Berndt Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.
Download or read book Neural Fields written by Stephen Coombes and published by Springer. This book was released on 2014-06-17 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural field theory has a long-standing tradition in the mathematical and computational neurosciences. Beginning almost 50 years ago with seminal work by Griffiths and culminating in the 1970ties with the models of Wilson and Cowan, Nunez and Amari, this important research area experienced a renaissance during the 1990ties by the groups of Ermentrout, Robinson, Bressloff, Wright and Haken. Since then, much progress has been made in both, the development of mathematical and numerical techniques and in physiological refinement und understanding. In contrast to large-scale neural network models described by huge connectivity matrices that are computationally expensive in numerical simulations, neural field models described by connectivity kernels allow for analytical treatment by means of methods from functional analysis. Thus, a number of rigorous results on the existence of bump and wave solutions or on inverse kernel construction problems are nowadays available. Moreover, neural fields provide an important interface for the coupling of neural activity to experimentally observable data, such as the electroencephalogram (EEG) or functional magnetic resonance imaging (fMRI). And finally, neural fields over rather abstract feature spaces, also called dynamic fields, found successful applications in the cognitive sciences and in robotics. Up to now, research results in neural field theory have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. There is no comprehensive collection of results or reviews available yet. With our proposed book Neural Field Theory, we aim at filling this gap in the market. We received consent from some of the leading scientists in the field, who are willing to write contributions for the book, among them are two of the founding-fathers of neural field theory: Shun-ichi Amari and Jack Cowan.
Download or read book Principal Concepts in Applied Evolutionary Computation Emerging Trends written by Hong, Wei-Chiang Samuelson and published by IGI Global. This book was released on 2012-06-30 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly powerful and diverse computing technologies have the potential to tackle ever greater and more complex problems and dilemmas in engineering and science disciplines. Principal Concepts in Applied Evolutionary Computation: Emerging Trends provides an introduction to the important interdisciplinary discipline of evolutionary computation, an artificial intelligence field that combines the principles of computational intelligence with the mechanisms of the theory of evolution. Academics and practicing field professionals will find this reference useful as they break into the emerging and complex world of evolutionary computation, learning to harness and utilize this exciting new interdisciplinary field.
Download or read book Analysis of Neural Data written by Robert E. Kass and published by Springer. This book was released on 2014-07-08 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.