Download or read book Splitting Methods in Communication Imaging Science and Engineering written by Roland Glowinski and published by Springer. This book was released on 2017-01-05 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
Download or read book Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems written by Chuan He and published by Springer Nature. This book was released on 2023-08-28 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image denoising, image deblurring, image inpainting, super-resolution, and compressed sensing reconstruction have important application value in engineering practice, and they are also the hot frontiers in the field of image processing. This book focuses on the numerical analysis of ill condition of imaging inverse problems and the methods of solving imaging inverse problems based on operator splitting. Both algorithmic theory and numerical experiments have been addressed. The book is divided into six chapters, including preparatory knowledge, ill-condition numerical analysis and regularization method of imaging inverse problems, adaptive regularization parameter estimation, and parallel solution methods of imaging inverse problem based on operator splitting. Although the research methods in this book take image denoising, deblurring, inpainting, and compressed sensing reconstruction as examples, they can also be extended to image processing problems such as image segmentation, hyperspectral decomposition, and image compression. This book can benefit teachers and graduate students in colleges and universities, or be used as a reference for self-study or further study of image processing technology engineers.
Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Download or read book Splitting Algorithms Modern Operator Theory and Applications written by Heinz H. Bauschke and published by Springer Nature. This book was released on 2019-11-06 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together research articles and state-of-the-art surveys in broad areas of optimization and numerical analysis with particular emphasis on algorithms. The discussion also focuses on advances in monotone operator theory and other topics from variational analysis and nonsmooth optimization, especially as they pertain to algorithms and concrete, implementable methods. The theory of monotone operators is a central framework for understanding and analyzing splitting algorithms. Topics discussed in the volume were presented at the interdisciplinary workshop titled Splitting Algorithms, Modern Operator Theory, and Applications held in Oaxaca, Mexico in September, 2017. Dedicated to Jonathan M. Borwein, one of the most versatile mathematicians in contemporary history, this compilation brings theory together with applications in novel and insightful ways.
Download or read book Proximal Algorithms written by Neal Parikh and published by Now Pub. This book was released on 2013-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.
Download or read book Large Scale Convex Optimization written by Ernest K. Ryu and published by Cambridge University Press. This book was released on 2022-12-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms.
Download or read book Fixed Point Algorithms for Inverse Problems in Science and Engineering written by Heinz H. Bauschke and published by Springer Science & Business Media. This book was released on 2011-05-27 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Download or read book Convex Optimization written by Sébastien Bubeck and published by Foundations and Trends (R) in Machine Learning. This book was released on 2015-11-12 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Download or read book Operator Splitting Methods in Control written by Giorgos Stathopoulos and published by . This book was released on 2016-08-09 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operator Splitting Methods in Control provides a comprehensive survey of a family of first order methods known as operator splitting methods
Download or read book Large Scale and Distributed Optimization written by Pontus Giselsson and published by Springer. This book was released on 2018-11-11 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimization problems, often in distributed fashion, this topic has over the last decade emerged to become very important. As well as specific coverage of this active research field, the book serves as a powerful source of information for practitioners as well as theoreticians. Large-Scale and Distributed Optimization is a unique combination of contributions from leading experts in the field, who were speakers at the LCCC Focus Period on Large-Scale and Distributed Optimization, held in Lund, 14th–16th June 2017. A source of information and innovative ideas for current and future research, this book will appeal to researchers, academics, and students who are interested in large-scale optimization.
Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.
Download or read book The Linear Complementarity Problem written by Richard W. Cottle and published by SIAM. This book was released on 2009-08-27 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: A revised edition of the standard reference on the linear complementarity problem.
Download or read book Big Data over Networks written by Shuguang Cui and published by Cambridge University Press. This book was released on 2016-01-14 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.
Download or read book Scale Space and Variational Methods in Computer Vision written by Xue-Cheng Tai and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, emanated from the joint edition of the 5th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2009 and the 7th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2009, held in Voss, Norway in June 2009. The 71 revised full papers presented were carefully reviewed and selected numerous submissions. The papers are organized in topical sections on segmentation and detection; image enhancement and reconstruction; motion analysis, optical flow, registration and tracking; surfaces and shapes; scale space and feature extraction.
Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
Download or read book Equilibrium Problems and Variational Models written by P. Daniele and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume, devoted to variational analysis and its applications, collects selected and refereed contributions, which provide an outline of the field. The meeting of the title "Equilibrium Problems and Variational Models", which was held in Erice (Sicily) in the period June 23 - July 2 2000, was the occasion of the presentation of some of these papers; other results are a consequence of a fruitful and constructive atmosphere created during the meeting. New results, which enlarge the field of application of variational analysis, are presented in the book; they deal with the vectorial analysis, time dependent variational analysis, exact penalization, high order deriva tives, geometric aspects, distance functions and log-quadratic proximal methodology. The new theoretical results allow one to improve in a remarkable way the study of significant problems arising from the applied sciences, as continuum model of transportation, unilateral problems, multicriteria spatial price models, network equilibrium problems and many others. As noted in the previous book "Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models", edited by F. Giannessi, A. Maugeri and P.M. Pardalos, Kluwer Academic Publishers, Vol. 58 (2001), the progress obtained by variational analysis has permitted to han dle problems whose equilibrium conditions are not obtained by the mini mization of a functional. These problems obey a more realistic equilibrium condition expressed by a generalized orthogonality (complementarity) con dition, which enriches our knowledge of the equilibrium behaviour. Also this volume presents important examples of this formulation.