Download or read book Solving ODEs with Maple V written by David Barrow and published by Brooks Cole. This book was released on 1996 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This resource manual/laboratory book shows students how to use the Maple computer algebra system to solve problems in ordinary differential equations. Projects, exercises, and explanations show readers how to get the most out of the Maple computer algebra
Download or read book Differential Equations with Maple V written by Martha L Abell and published by Academic Press. This book was released on 2014-05-09 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations with Maple V provides an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Maple V is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Maple V can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are also provided. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.
Download or read book Solving Differential Equations with Maple V Release 4 written by David Barrow and published by Brooks Cole. This book was released on 1998 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book helps students tap into the power of Maple®, thereby simplifying the computations and graphics that are often required in the practical use of mathematics. Numerous examples and exercises provide a thorough introduction to the basic Maple® commands that are needed to solve differential equations. Topics include: numerical algorithms, first order linear systems, homogeneous and nonhomogeneous equations, beats and resonance, Laplace Transforms, qualitative theory, nonlinear systems, and much more.
Download or read book Solving Nonlinear Partial Differential Equations with Maple and Mathematica written by Inna Shingareva and published by Springer Science & Business Media. This book was released on 2011-07-24 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Download or read book Student Solutions Manual Partial Differential Equations Boundary Value Problems with Maple written by George A. Articolo and published by Academic Press. This book was released on 2009-07-22 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
Download or read book Maple V Mathematics and its Applications written by Robert J. Lopez and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Maple Summer Workshop and Symposium, MSWS '94, reflects the growing commu nity of Maple users around the world. This volume contains the contributed papers. A careful inspection of author affiliations will reveal that they come from North America, Europe, and Australia. In fact, fifteen come from the United States, two from Canada, one from Australia, and nine come from Europe. Of European papers, two are from Ger many, two are from the Netherlands, two are from Spain, and one each is from Switzerland, Denmark, and the United Kingdom. More important than the geographical diversity is the intellectual range of the contributions. We begin to see in this collection of works papers in which Maple is used in an increasingly flexible way. For example, there is an application in computer science that uses Maple as a tool to create a new utility. There is an application in abstract algebra where Maple has been used to create new functionalities for computing in a rational function field. There are applications to geometrical optics, digital signal processing, and experimental design.
Download or read book Maple and Mathematica written by Inna K. Shingareva and published by Springer Science & Business Media. This book was released on 2007-12-27 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: By presenting side-by-side comparisons, this handbook enables Mathematica users to quickly learn Maple, and vice versa. The parallel presentation enables students, mathematicians, scientists, and engineers to easily find equivalent functions on each of these algebra programs. The handbook provides core material for incorporating Maple and Mathematica as working tools into many different undergraduate mathematics courses.
Download or read book Traveling Wave Analysis of Partial Differential Equations written by Graham Griffiths and published by Academic Press. This book was released on 2010-12-09 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Download or read book Advanced Problem Solving with Maple written by William P. Fox and published by CRC Press. This book was released on 2019-05-29 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book’s real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP’s Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: • From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. • From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.
Download or read book Scaling of Differential Equations written by Hans Petter Langtangen and published by Springer. This book was released on 2016-06-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.
Download or read book Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations written by Uri M. Ascher and published by SIAM. This book was released on 1998-08-01 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains all the material necessary for a course on the numerical solution of differential equations.
Download or read book Ordinary Differential Equations and Integral Equations written by C.T.H. Baker and published by Elsevier. This book was released on 2001-06-20 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of
Download or read book Understanding Maple written by Ian Thompson and published by Cambridge University Press. This book was released on 2016-11-14 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the key features of Maple, with a focus on showing how things work, and how to avoid common problems.
Download or read book Ordinary and Partial Differential Equation Routines in C C Fortran Java Maple and MATLAB written by H.J. Lee and published by CRC Press. This book was released on 2003-11-24 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a set of ODE/PDE integration routines in the six most widely used computer languages, enabling scientists and engineers to apply ODE/PDE analysis toward solving complex problems. This text concisely reviews integration algorithms, then analyzes the widely used Runge-Kutta method. It first presents a complete code before discussin
Download or read book Dynamical Systems with Applications using MapleTM written by Stephen Lynch and published by Springer Science & Business Media. This book was released on 2009-12-23 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent reviews of the first edition (Mathematical Reviews, SIAM, Reviews, UK Nonlinear News, The Maple Reporter) New edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions Two new chapters on neural networks and simulation have also been added Wide variety of topics covered with applications to many fields, including mechanical systems, chemical kinetics, economics, population dynamics, nonlinear optics, and materials science Accessible to a broad, interdisciplinary audience of readers with a general mathematical background, including senior undergraduates, graduate students, and working scientists in various branches of applied mathematics, the natural sciences, and engineering A hands-on approach is used with Maple as a pedagogical tool throughout; Maple worksheet files are listed at the end of each chapter, and along with commands, programs, and output may be viewed in color at the author’s website with additional applications and further links of interest at Maplesoft’s Application Center
Download or read book Differential Equations for Engineers written by Wei-Chau Xie and published by Cambridge University Press. This book was released on 2010-04-26 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.