EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Book Numerical Solution of Partial Differential Equations by the Finite Element Method

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Book Fine Regularity of Solutions of Elliptic Partial Differential Equations

Download or read book Fine Regularity of Solutions of Elliptic Partial Differential Equations written by Jan Malý and published by American Mathematical Soc.. This book was released on 1997 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.

Book The Analysis and Solution of Partial Differential Equations

Download or read book The Analysis and Solution of Partial Differential Equations written by Robert L. Street and published by . This book was released on 1973 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Partial Differential Equations  Student Solutions Manual

Download or read book Partial Differential Equations Student Solutions Manual written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2008-02-25 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practice partial differential equations with this student solutions manual Corresponding chapter-by-chapter with Walter Strauss's Partial Differential Equations, this student solutions manual consists of the answer key to each of the practice problems in the instructional text. Students will follow along through each of the chapters, providing practice for areas of study including waves and diffusions, reflections and sources, boundary problems, Fourier series, harmonic functions, and more. Coupled with Strauss's text, this solutions manual provides a complete resource for learning and practicing partial differential equations.

Book Numerical Solutions of Partial Differential Equations

Download or read book Numerical Solutions of Partial Differential Equations written by Silvia Bertoluzza and published by Springer Science & Business Media. This book was released on 2009-03-13 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.

Book PETSc for Partial Differential Equations  Numerical Solutions in C and Python

Download or read book PETSc for Partial Differential Equations Numerical Solutions in C and Python written by Ed Bueler and published by SIAM. This book was released on 2020-10-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Book Numerical Solutions for Partial Differential Equations

Download or read book Numerical Solutions for Partial Differential Equations written by Victor Grigor'e Ganzha and published by CRC Press. This book was released on 1996-07-12 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.

Book Numerical Solution of Partial Differential Equations

Download or read book Numerical Solution of Partial Differential Equations written by K. W. Morton and published by Cambridge University Press. This book was released on 2005-04-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

Book Numerical Solution of Partial Differential Equations in Science and Engineering

Download or read book Numerical Solution of Partial Differential Equations in Science and Engineering written by Leon Lapidus and published by John Wiley & Sons. This book was released on 2011-02-14 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.

Book Solution Manual for Partial Differential Equations for Scientists and Engineers

Download or read book Solution Manual for Partial Differential Equations for Scientists and Engineers written by Stanley J. Farlow and published by Courier Dover Publications. This book was released on 2020-07-15 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published by John Wiley and Sons in 1983, Partial Differential Equations for Scientists and Engineers was reprinted by Dover in 1993. Written for advanced undergraduates in mathematics, the widely used and extremely successful text covers diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Dover's 1993 edition, which contains answers to selected problems, is now supplemented by this complete solutions manual.

Book Methods for Constructing Exact Solutions of Partial Differential Equations

Download or read book Methods for Constructing Exact Solutions of Partial Differential Equations written by Sergey V. Meleshko and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.

Book An Introduction to Partial Differential Equations

Download or read book An Introduction to Partial Differential Equations written by Michael Renardy and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Book Analytic Methods for Partial Differential Equations

Download or read book Analytic Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

Book Splitting Methods for Partial Differential Equations with Rough Solutions

Download or read book Splitting Methods for Partial Differential Equations with Rough Solutions written by Helge Holden and published by European Mathematical Society. This book was released on 2010 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Book Methods for Partial Differential Equations

Download or read book Methods for Partial Differential Equations written by Marcelo R. Ebert and published by Birkhäuser. This book was released on 2018-02-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Book Partial Differential Equations in Engineering Problems

Download or read book Partial Differential Equations in Engineering Problems written by Kenneth S. Miller and published by Courier Dover Publications. This book was released on 2020-03-18 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise text derives common partial differential equations, discussing and applying techniques of Fourier analysis. Also covers Legendre, Bessel, and Mathieu functions and general structure of differential operators. 1953 edition.