EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Solutions of a Stochastic Differential Equation Forced Onto a Manifold by a Large Drift

Download or read book Solutions of a Stochastic Differential Equation Forced Onto a Manifold by a Large Drift written by Gary Shon Katzenberger and published by . This book was released on 1990 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Differential Equations on Manifolds

Download or read book Stochastic Differential Equations on Manifolds written by K. D. Elworthy and published by Cambridge University Press. This book was released on 1982 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aims of this book, originally published in 1982, are to give an understanding of the basic ideas concerning stochastic differential equations on manifolds and their solution flows, to examine the properties of Brownian motion on Riemannian manifolds when it is constructed using the stochiastic development and to indicate some of the uses of the theory. The author has included two appendices which summarise the manifold theory and differential geometry needed to follow the development; coordinate-free notation is used throughout. Moreover, the stochiastic integrals used are those which can be obtained from limits of the Riemann sums, thereby avoiding much of the technicalities of the general theory of processes and allowing the reader to get a quick grasp of the fundamental ideas of stochastic integration as they are needed for a variety of applications.

Book Stochastic Differential Equations and Applications

Download or read book Stochastic Differential Equations and Applications written by Avner Friedman and published by Academic Press. This book was released on 2014-06-20 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov’s formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.

Book Stochastic Analysis

    Book Details:
  • Author : Michael Craig Cranston
  • Publisher : American Mathematical Soc.
  • Release : 1995
  • ISBN : 0821802895
  • Pages : 634 pages

Download or read book Stochastic Analysis written by Michael Craig Cranston and published by American Mathematical Soc.. This book was released on 1995 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with current developments in stochastic analysis and its interfaces with partial differential equations, dynamical systems, mathematical physics, differential geometry, and infinite-dimensional analysis. The origins of stochastic analysis can be found in Norbert Wiener's construction of Brownian motion and Kiyosi Itô's subsequent development of stochastic integration and the closely related theory of stochastic (ordinary) differential equations. The papers in this volume indicate the great strides that have been made in recent years, exhibiting the tremendous power and diversity of stochastic analysis while giving a clear indication of the unsolved problems and possible future directions for development. The collection represents the proceedings of the AMS Summer Institute on Stochastic Analysis, held in July 1993 at Cornell University. Many of the papers are largely expository in character while containing new results.

Book Stochastic Differential Equations and Applications

Download or read book Stochastic Differential Equations and Applications written by X Mao and published by Elsevier. This book was released on 2007-12-30 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced undergraduate and graduate text has now been revised and updated to cover the basic principles and applications of various types of stochastic systems, with much on theory and applications not previously available in book form. The text is also useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists. Has been revised and updated to cover the basic principles and applications of various types of stochastic systems Useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists

Book Stochastic Analysis on Infinite Dimensional Spaces

Download or read book Stochastic Analysis on Infinite Dimensional Spaces written by H Kunita and published by CRC Press. This book was released on 1994-08-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the following topics in stochastic analysis: 1. Stochastic analysis related to Lie groups: stochastic analysis of loop spaces and infinite dimensional manifolds has been developed rapidly after the fundamental works of Gross and Malliavin. (Lectures by Driver, Gross, Mitoma, and Sengupta.)

Book Stochastic Differential Equations and Diffusion Processes

Download or read book Stochastic Differential Equations and Diffusion Processes written by N. Ikeda and published by Elsevier. This book was released on 2014-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sections discussing complex (conformal) martingales and Kahler diffusions have been added.

Book Stochastic Differential Equations in Infinite Dimensional Spaces

Download or read book Stochastic Differential Equations in Infinite Dimensional Spaces written by G. Kallianpur and published by IMS. This book was released on 1995 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Differential Equations

Download or read book Stochastic Differential Equations written by Peter H. Baxendale and published by World Scientific. This book was released on 2007 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of 15 articles written by experts in stochastic analysis. The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract the attention of mathematicians of all generations. Together with a short but thorough introduction to SPDEs, it presents a number of optimal, and essentially unimprovable, results about solvability for a large class of both linear and non-linear equations. The other papers in this volume were specially written for the occasion of Prof RozovskiiOCOs 60th birthday. They tackle a wide range of topics in the theory and applications of stochastic differential equations, both ordinary and with partial derivatives."

Book Lectures on Probability Theory and Statistics

Download or read book Lectures on Probability Theory and Statistics written by Amir Dembo and published by Springer Science & Business Media. This book was released on 2005-11-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains two of the three lectures that were given at the 33rd Probability Summer School in Saint-Flour (July 6-23, 2003). Amir Dembo’s course is devoted to recent studies of the fractal nature of random sets, focusing on some fine properties of the sample path of random walk and Brownian motion. In particular, the cover time for Markov chains, the dimension of discrete limsup random fractals, the multi-scale truncated second moment and the Ciesielski-Taylor identities are explored. Tadahisa Funaki’s course reviews recent developments of the mathematical theory on stochastic interface models, mostly on the so-called \nabla \varphi interface model. The results are formulated as classical limit theorems in probability theory, and the text serves with good applications of basic probability techniques.

Book On Stochastic Differential Equations

Download or read book On Stochastic Differential Equations written by Various and published by Maurice Press. This book was released on 2007-03 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMOIRS O F T H i-AMERICAN MATHEMATICAL SOCIETY NLMBKR 4 ON STOCHASTIC DlFFliRL. NT. lAL LUAUONS KFYOSl 1TO PUBLISHED BY THh AMERICAN MATHEMATFCAL SCXJF1T 531 West 116th St., New York City ON STOCHASTIC DIFFERENTIAL EQUATIONS By KIYOSI ITO Let Xj. be a simple Markoff process with a continuous parameter t, and F t, s, E be the transition probability law of the process D F t, -s, E - Prfx E X.-3, where the right side means the probability of x a E under the condition x. f Hie differential of x. at t s is given by the transition probability law of x in an infinitesimal neighborhood of t s 2 FCs-A jjs E. W. Feller has discussed the case in which it has the following form 3 F s-A 2, JJS A E 1-p s, I yA 2 G s-A 2, j js A E yA 2 p s, j P s, 3, E o yA 2, where G s-Ag, 5 s A, j, E is a probability distribution as a function of E and satisfies 5 T- T f 1 2 J -j h-jl f 6 2 J, l-J G s-A 2, J js dn - b t, J, for A A and p s, J and P s, J, E is a probability distribution in E. The special case of M p s, J O 11 has already been treated by A, Kolmogoroff and S. Bernstein. 3 We shall introduce a somewhat general definition of the differential of the process x. Cf. 85. Let P A denote the conditional probability law L 8,5, 2 Mx-V E-3, A V A 2 0. If the 1 A -times convolution of P fl A tends to a probability law L with regard to Levys law-distance as A A 0, then L is called the I d S, J stochastic differential coefficient at s. L is clearly an infinitely divisible law. In the above Fellers case the logarithmic characteristic function Received by the editors March 29, 5 KIYOSI I TO V, L S of L f is given by 7 z, L ib s, j z - a s, j z p s, 5 f 03 e iu2 - 1 P s, J, du J . 6 8 j 7 - 00 A problem of stochastic differential equations is to construct a Markoff process whose stochastic differential coefficient L. - is given as a function of t, . 9 W. Feller has deduced the following integro-differential equation from 3, 4, 5 and 6 F t, J s, E - P t, j F t, J s, E p t, f F t, 7 s, E P t, J, dT 0. He has proved the J-oo existence and uniqueness of the solution of this equation under some conditions and has shown that the solution becomes a transition probability law, and satisfies 3, 4, 5 6. He has termed the case p t, j as continuous case and the case a t, J and b t, J as purely discontinuous case. It is true that we can construct a simple Markoff process from the transition probability law by introducing a probability distribution into the functional space RR by Kolmogoroff f s theorem, 7 but it is impossible to discuss the regularity of the ob tained process, for example measurability, continuity, discontinuity of the first kind etc, as was pointed out by J. L, Doob. 8 To discuss the measurability of the process for example, J, L. Doob has introduced a probability distribution on a subspace of RR and E, Slutsky has introduced a new concept tf measurable kernel 1,9 We shall in vestigate the sense of the term lf continuous case 11 and fl purely discontinuous case 11 used by W, Feller from the rigorous view-point of J. L. Doob and E. Slutsky. A recent research of J, L, Doob O concerning a simple Markoff process taking values in an en umerable set has been achieved from this view-point, A research of R. FortetH con cerning the above continuous case seems also to stand on the same idea but the author is not yet informed of the details . In his paper ON STOCHASTIC PROCESSES I 11 12 the author has deduced Levys canonical form of differential processes with no fixed discontinuities by making use of the rigorous scheme of J. L, Doob, Using the results of the above paper, we shall here construct the solution of the above stochastic differential equation in such a way that we may be able to discuss the regularity of the solution. For this purpose we transform the stochastic differential equation into a stochastic integral . equation...

Book Reflecting Stochastic Differential Equations with Jumps and Applications

Download or read book Reflecting Stochastic Differential Equations with Jumps and Applications written by Situ Rong and published by CRC Press. This book was released on 1999-08-05 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many important physical variables satisfy certain dynamic evolution systems and can take only non-negative values. Therefore, one can study such variables by studying these dynamic systems. One can put some conditions on the coefficients to ensure non-negative values in deterministic cases. However, as a random process disturbs the system, the components of solutions to stochastic differential equations (SDE) can keep changing between arbitrary large positive and negative values-even in the simplest case. To overcome this difficulty, the author examines the reflecting stochastic differential equation (RSDE) with the coordinate planes as its boundary-or with a more general boundary. Reflecting Stochastic Differential Equations with Jumps and Applications systematically studies the general theory and applications of these equations. In particular, the author examines the existence, uniqueness, comparison, convergence, and stability of strong solutions to cases where the RSDE has discontinuous coefficients-with greater than linear growth-that may include jump reflection. He derives the nonlinear filtering and Zakai equations, the Maximum Principle for stochastic optimal control, and the necessary and sufficient conditions for the existence of optimal control. Most of the material presented in this book is new, including much new work by the author concerning SDEs both with and without reflection. Much of it appears here for the first time. With the application of RSDEs to various real-life problems, such as the stochastic population and neurophysiological control problems-both addressed in the text-scientists dealing with stochastic dynamic systems will find this an interesting and useful work.

Book Stochastic Differential Equations

Download or read book Stochastic Differential Equations written by K. Sobczyk and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Et moi, ..~ si lavait su CO.llUlJalt en revc:nir, One acMcc matbcmatica bu JaIdcred the human rac:c. It bu put COIDIDOD _ beet je n'y serais point aBe.' Jules Verne wbac it bdoup, 0Jl!be~ IbcII _t to!be dusty cauialcr Iabc & d 'diMardod__ The series is divergent; thc:reforc we may be -'. I!.ticT. Bc:I1 able to do something with it. O. Hcavisidc Mathematics is a tool for thought. A highly necessary tool in a world when: both feedback and non linearities abound. Similarly. all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statcmalts as: 'One service topology has rendered mathematical physics ...-; 'One service logic has rendered c0m puter science ... '; 'One service category theory has rendered mathematics ... '. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series. This series, Mathematics and Its Applications. started in 19n. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope. At the time I wrote "Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However. the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branc:hes. It also happens, quite often in fact, that branches which were thought to be completely

Book On Stochastic Differential Equations

Download or read book On Stochastic Differential Equations written by Kiyosi Itô and published by American Mathematical Soc.. This book was released on 1951 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations

Download or read book Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations written by Grigorij Kulinich and published by Springer Nature. This book was released on 2020-04-29 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to unstable solutions of stochastic differential equations (SDEs). Despite the huge interest in the theory of SDEs, this book is the first to present a systematic study of the instability and asymptotic behavior of the corresponding unstable stochastic systems. The limit theorems contained in the book are not merely of purely mathematical value; rather, they also have practical value. Instability or violations of stability are noted in many phenomena, and the authors attempt to apply mathematical and stochastic methods to deal with them. The main goals include exploration of Brownian motion in environments with anomalies and study of the motion of the Brownian particle in layered media. A fairly wide class of continuous Markov processes is obtained in the limit. It includes Markov processes with discontinuous transition densities, processes that are not solutions of any Itô's SDEs, and the Bessel diffusion process. The book is self-contained, with presentation of definitions and auxiliary results in an Appendix. It will be of value for specialists in stochastic analysis and SDEs, as well as for researchers in other fields who deal with unstable systems and practitioners who apply stochastic models to describe phenomena of instability.

Book Stochastic Differential Equations

Download or read book Stochastic Differential Equations written by Bernt Oksendal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.