EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Solution processable Solar Cell Technologies

Download or read book Solution processable Solar Cell Technologies written by Yeefun Lim and published by . This book was released on 2011 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: The high cost of production of solar panels has prevented the widespread adoption of solar energy. A possible solution is to pursue solution-based solar cell technologies, since they can enable a low-cost and high-throughput manufacturing process. Both organic semiconductors and inorganic nanocrystals have emerged as promising solution-processable materials for solar cells. In this dissertation, I present my work on the investigation of both classes of materials for solar cell applications. Organic photovoltaics consist of donor and acceptor organic semiconductors. The mechanism of charge transfer between the donor poly(3-hexylthiophene) (P3HT) and acceptor C60 was studied by incorporating an inter-layer into the bilayer solar cell. Charge transfer was shown to take place in a two-step process whereby energy transfer of the photo-generated excitons in P3HT to C60 is followed by a backward charge transfer step to P3HT. Novel ways to process these materials are also investigated. Solar cells from P3HT and a fullerene derivative, phenyl C61-butyric acid methyl ester (PCBM) were fabricated by spray-deposition. Good power conversion efficiencies above 2 % were demonstrated, indicating the viability of spray deposition as a fabrication method. In a separate effort, a novel fluorinated resorcinarene photoresist was used to photolithographically pattern solar cells based on a blend of P3HT and PCBM for highvoltage applications. A 15 mm array of 300 solar cells connected in series achieved an open circuit voltage (VOC) of 90 volts. Three new classes of materials for organic solar cell acceptors are presented, namely pentacenes, hexacenes, and anthradithiophenes. Solar cells based on P3HT and pentacenes gave efficiencies as high as 1.2 %. The hexacenes have the lowest bandgap, enabling hexacene-based solar cells to have photocurrent response up to 800 nm. The anthradithiophene-based solar cells achieved the highest VOC approaching 1.1 Volts, and decent efficiencies of around 0.8 %. Finally, a facile alcothermal method for the synthesis of dispersible CuO and Cu2O nanocrystals is presented. A bilayer CuO / PCBM solar cell demonstrated an efficiency of 0.04 %, indicating the potential of these materials for light harvesting applications.

Book Progress in High Efficient Solution Process Organic Photovoltaic Devices

Download or read book Progress in High Efficient Solution Process Organic Photovoltaic Devices written by Yang Yang and published by Springer. This book was released on 2015-02-26 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process for organic solar cells and provides a state-of-the-art report of the latest developments. World class experts cover fundamental, materials, devices and manufacturing technology of OPV technology.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Liming Ding and published by John Wiley & Sons. This book was released on 2022-02-09 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.

Book Printable Solar Cells

    Book Details:
  • Author : Nurdan Demirci Sankir
  • Publisher : John Wiley & Sons
  • Release : 2017-04-19
  • ISBN : 1119283736
  • Pages : 578 pages

Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-04-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Book Solution Processable Components for Organic Electronic Devices

Download or read book Solution Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-06-07 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Book Materials for Solar Cell Technologies I

Download or read book Materials for Solar Cell Technologies I written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2021-01-20 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reviews recent research and new trends in the area of solar cell materials. Topics include fabrication methods, solar cell design, energy efficiency and commercialization of next-generation materials. Special focus is placed on graphene and carbon nanomaterials, graphene in dye-sensitized solar cells, perovskite solar cells and organic photovoltaic cells, as well as on transparent conducting electrode (TCE) materials, hollow nanostructured photoelectrodes, monocrystalline silicon solar cells (MSSC) and BHJ organic solar cells. Also discussed is the use of graphene, sulfides, and metal nanoparticle-based absorber materials. Keywords: Solar Cell, Graphene Nanomaterials, Carbon Nanomaterials, Graphene in Dye-sensitized Solar Cells, Perovskite Solar Cells, Organic Photovoltaic Cells, Transparent Conducting Electrode (TCE) Materials, Hollow Nanostructured Photoelectrodes, Monocrystalline Silicon Solar Cells (MSSC), BHJ Organic Solar Cells, Electrochemical Sensing, Low Band-Gap Materials, Absorber Materials for Solar Cells.

Book Device Physics of Solution Processable Solar Cells

Download or read book Device Physics of Solution Processable Solar Cells written by Jason Erik Lewis and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Work was the development and implementation of a layer-by-layer (LBL) all-spray solution-processable technique to fabricate large-scale OPV arrays, with more than 30% transmission in the visible to near IR range. Comparing with traditional laboratory OPV fabrication based on spin-coating and using metal as cathode contact, which greatly limits transparency of solar cells and posts difficulty for large scale manufacturing, this LBL spray process solves these two problems simultaneously. This technology eliminates the need for high-vacuum, high temperature, low rate and high-cost manufacturing associated with current silicon and in-organic thin film photovoltaic products. Furthermore, this technology could be used on any type of substrate including cloth and plastic. Single cell OPV with active area of 4mm2 was used as preliminary test device to obtain fabrication parameters for multi-cell OPV arrays. Three different sizes of OPV arrays were fabricated and tested under various illumination conditions. Starting from a 4" x 4" array with 50 cells in series connection 4" x 4" substrate consisting of 50 cells with total active area of 30cm2, a scaled up 1' x 1' array was fabricated as a proof of concept, and whose results are reported. Scaled down arrays, called micro arrays, are also presented in this work. OPV micro array has the potential application in DC power supplies for electrostatic Microelectromechanical systems (MEMS) devices. The first generation micro array consists of 20 small (1mm2) solar cells connected in series for a total device area of approximately 2.2cm2. The 2nd generation micro array with 60 cells shares the same size substrates and single cell active area as the first generation. However, the 2nd generation micro array cell has a new design with reduced series resistance and improved cell occupancy by 3 fold. Infrared quantum dots (QD) such as PbS and PbSe have potential in photovoltaic applications. These solution processable quantum dots with tunable electronic properties offer very attractive approach for expanding spectral sensitivity of U+F070 -conjugated polymers to infrared region of solar spectrum. However, these QDs often have defects originated from either incomplete surface passivation or imperfections in the quantum Dots. The electronic levels of defects often are within the bandgap of the semiconductor. These in-gap states are of great importance since they affect the final destiny of excitons. Continuous wave photoinduced absorption spectroscopy has proven to be a convenient and successful technique to study long-lived photoexcitations of in-gap states. Part of this Ph. D work was the investigation of a peculiar gap state found in films of PbS QDs. This gap state bears confinement dependence, with a lifetime about 2[mu]s. A detailed analysis of the Stokes shift, temperature dependence of PL, absorption and photoinduced absorption reveals the unconventional GS is a new state of a trapped exciton in a QD film. This gap state is directly relevant to exciton dissociation and carrier extraction in this class of semiconductor quantum dots. As synthesized PbSe and PbS quantum dots usually have bulky ligands such as oleic acids or TOPO (trioctylphosphine oxide). This capping layer is necessary to prevent nanocrystals from coalescence, however, the bulky ligands hinder charge extraction from and charge transport through the nanocrystals, as well as exciton dissociation at the nanocrystal/polymer interface. Common ways to manipulate ligands include ligand wash and ligand exchange in solution, and ligand removal on films. Through this Ph. D. work, a novel method using electric field to manipulate quantum dots ligands for interface of quantum dots and polymer, which possibly could facilitate charge extraction from the quantum dots and charge transfer between quantum dots and polymers, without the need of harmful chemicals. Over four orders.

Book Materials for Solar Cell Technologies II

Download or read book Materials for Solar Cell Technologies II written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2021-06-20 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents current R&D and new trends in the field of solar cell technologies. Topics covered include fabrication methods, various types of cell design, versatile applications of solar cells, PEDOT:PSS thermoelectric materials, transparent conducting electrodes, simulation models for solar photovoltaic materials, and hybrid materials for solar cells. Keywords: Optoelectronic Devices, PEDOT:PSS Materials, Nanomaterials, Transparent Electrodes, Hybrid Solar Cell Materials, Simulation Models, Solar Cell Design, Solar Cell Applications.

Book Material Development for Highly Processable Thin Film Solar Cells

Download or read book Material Development for Highly Processable Thin Film Solar Cells written by Brion Bob and published by . This book was released on 2014 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability of a photovoltaic cell to convert incident photons into electrical power is determined by the properties of its constituent materials and on their ability to function in concert with one another. Thin film solar cell materials benefit from the use of thin absorber layers that are relatively tolerant of a variety of structural defects. This allows for absorber layers to be made from polycrystalline films fabricated using raw materials that do not need to be refined to incredible levels of purity, as is generally required for single crystalline solar materials. Each of these traits represents significant logistical advantages during the industrial scale-up of thin film technologies, but they can be severely offset if scarce, expensive, or toxic materials are required during device fabrication. The various studies contained in the following chapters are dedicated to the exploration of next generation material systems that are being developed to resolve material issues that could potentially inhibit the large-scale implementation of existing thin film solar cell technologies. Silver nanowire networks stand as a potential replacement for transparent conductors made from doped metal oxide films. They exhibit excellent optical and electronic performance, and can be deposited in minutes from benign solutions with little damage to underlying device layers. When combined with an appropriately chosen matrix material to surround and encapsulate the wires, the resulting wire/matrix nanocomposite becomes a highly versatile electrode that can be integrated into a variety of thin film devices. Much of this dissertation is dedicated to the study and analysis of silver nanowire networks and partner materials and their applications in Cu(In, Ga)Se2 (CIGS) and amorphous silicon (a-Si) photovoltaics, starting from material synthesis and ink formulation and ending with device fabrication and characterization. In addition, the last chapter is dedicated to a discussion of heterojunction and space-charge formation in CZTSe solar cells, which is quickly becoming understood as a far more sensitive process than in its various chalcogenide analogues such as CIGS and CdTe. Together this set of materials would pave the way for the arrival of next generation thin film devices that can be fabricated quickly and with minimal reliance on indium, tellurium, or any other elements that would prevent their widespread commercial adoption.

Book Development of Solar Cells

Download or read book Development of Solar Cells written by Juganta K. Roy and published by Springer Nature. This book was released on 2021-05-12 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive overview of the fundamental concept, design, working protocols, and diverse photo-chemicals aspects of different solar cell systems with promising prospects, using computational and experimental techniques. It presents and demonstrates the art of designing and developing various solar cell systems through practical examples. Compared to most existing books in the market, which usually analyze existing solar cell approaches this volume provides a more comprehensive view on the field. Thus, it offers an in-depth discussion of the basic concepts of solar cell design and their development, leading to higher power conversion efficiencies. The book will appeal to readers who are interested in both fundamental and application-oriented research while it will also be an excellent tool for graduates, researchers, and professionals working in the field of photovoltaics and solar cell systems.

Book Recent Advances in Multifunctional Perovskite Materials

Download or read book Recent Advances in Multifunctional Perovskite Materials written by Poorva Sharma and published by BoD – Books on Demand. This book was released on 2022-12-14 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes current advances in the field of multifunctional perovskite materials, including information on their synthesis, characterization, and properties as well as their use in the fabrication of devices and applications. Chapters address such topics as the physiochemical properties of various perovskite materials, advances in perovskites for solar cells, and multifunctional materials and their numerous applications.

Book The Physics Of Solar Cells

    Book Details:
  • Author : Jenny A Nelson
  • Publisher : World Scientific Publishing Company
  • Release : 2003-05-09
  • ISBN : 1848168233
  • Pages : 387 pages

Download or read book The Physics Of Solar Cells written by Jenny A Nelson and published by World Scientific Publishing Company. This book was released on 2003-05-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.

Book Solution processable Oligomeric and Small Molecule Semiconductors for Organic Solar Cells

Download or read book Solution processable Oligomeric and Small Molecule Semiconductors for Organic Solar Cells written by Mylène Le Borgne and published by . This book was released on 2016 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells appear as a promising technology within photovoltaic field owing to their low-cost fabrication and their great flexibility enabling a widespread distribution. For now, they are still at the prototype stage due to their limited efficiency and lifetimes. Many efforts were realized in designing new materials as they are involved in every steps of the photovoltaic process and thus they dictate the cell efficiency. Along this thesis, two series of electron-donating semi-conductors were designed and synthesized. The first series consist in three oligomers containing three diketopyrrolopyrrole units, a well-studied chromophore. Those oligomers absorb up to the near infra-red region, a very interesting feature for light harvesting. Through the engineering of electron-rich spacers, various twists were generated in the oligomers backbone. The oligomer showing a coplanar conformation appears to be the most crystalline and thus exhibits the best charge transport properties with a hole mobility of 10-3 cm2.V-1.s-1. However, bulk heterojunction organic solar cells, this high crystallinity results in an unfavorable morphology and a PCE inferior to 1%. As for the second series, the four small molecules combined 3,3'-(ethane-1,2-diylidene)bis(indolin-2-one) (EBI), an electron deficient unit, and various electron-rich units such as thiophene (EBI-T), benzofuran (EBI-BF) and bithiophene (EBI-2T). Among EBI derivatives, EBI-BF demonstrated the highest hole mobility of 0.021 cm2.V-1.s-1 in field effect transistors due to its coplanar conformation. Meanwhile, in bulk heterojunction solar cells, the highest PCE of 1.92% was obtained with EBI-2T:PC61BM blend owing to a more appropriate morphology and the broadest absorption spectrum of EBI-2T.

Book Perovskite Solar Cells  Principle  Materials And Devices

Download or read book Perovskite Solar Cells Principle Materials And Devices written by Eric Wei-guang Diau and published by World Scientific. This book was released on 2017-09-04 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy and climate change are two of the most critical issues nowadays. These two topics are also correlated to each other. Fossil fuels are the main energy supplies that have been used in modern history since the industrial revolution. The impact of CO2 emission has been a major concern for its effect on global warming and other consequences. In addition, fossil fuels are not unlimited. Due to the increasing demands for energy supplies, alternative renewable, sustainable, environmentally friendly energy resources are desirable.Solar energy is an unlimited, clean, and renewable energy source, which can be considered to replace the energy supply of fossil fuel. The silicon solar cell is one of the dominant photovoltaic technologies currently, which converting sunlight directly into electric power with around 20% efficiency. This technique was been widely used in mainstream solar energy applications for decades, though the relatively energy-demanding production process remained with challenges to be resolved.Recently, emerging photovoltaic technologies such as organometal halide hybrid perovskite solar cell has attracted tremendous attention due to their promising power conversion efficiencies (over 22%) and ease of fabrication. Their progress roadmap is unprecedented in photovoltaic history from the material development and efficiency advancement perspective. Beyond the rapid progress achieved in the last few years, it is expected that this novel technology would make an impact on the future solar cell market providing long-term stability and Pb content issues are addressed. These challenges rely on a better understanding of materials and device function principles. The scope of this book is to provide a collection on the recent investigations from fundamental process, materials development to device optimization for perovskite solar cells.

Book Solar Cells

    Book Details:
  • Author : Ahmed Mourtada Elseman
  • Publisher : BoD – Books on Demand
  • Release : 2021-09-22
  • ISBN : 1838810161
  • Pages : 489 pages

Download or read book Solar Cells written by Ahmed Mourtada Elseman and published by BoD – Books on Demand. This book was released on 2021-09-22 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.

Book Principles Of Solar Cells  Connecting Perspectives On Device  System  Reliability  And Data Science

Download or read book Principles Of Solar Cells Connecting Perspectives On Device System Reliability And Data Science written by Muhammad Ashraf Alam and published by World Scientific. This book was released on 2022-07-15 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does a solar cell work? How efficient can it be? Why do intricate patterns of metal lines decorate the surface of a solar module? How are the modules arranged in a solar farm? How can sunlight be stored during the day so that it can be used at night? And, how can a lifetime of more than 25 years be ensured in solar modules, despite the exposure to extreme patterns of weather? How do emerging machine-learning techniques assess the health of a solar farm? This practical book will answer all these questions and much more.Written in a conversational style and with over one-hundred homework problems, this book offers an end-to-end perspective, connecting the multi-disciplinary and multi-scale physical phenomena of electron-photon interaction at the molecular level to the design of kilometers-long solar farms. A new conceptual framework explains each concept in a simple, crystal-clear form. The novel use of thermodynamics not only determines the ultimate conversion efficiencies of the various solar cells proposed over the years, but also identifies the measurement artifacts and establishes practical limits by correlating the degradation modes. Extensive coverage of conceptual techniques already developed in other fields further inspire innovative designs of solar farms.This book will not only help you to make a solar cell, but it will help you make a solar cell better, to trace and reclaim the photons that would have been lost otherwise. Collaborations across multiple disciplines make photovoltaics real and given the concern about reducing the overall cost of solar energy, this interdisciplinary book is essential reading for anyone interested in photovoltaic technology.

Book Rational Design of Solar Cells for Efficient Solar Energy Conversion

Download or read book Rational Design of Solar Cells for Efficient Solar Energy Conversion written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2018-08-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.