Download or read book Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs written by Josef Malek and published by SIAM. This book was released on 2014-12-22 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Download or read book Solution of Superlarge Problems in Computational Mechanics written by James H. Kane and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a need to solve problems in solid and fluid mechanics that currently exceed the resources of current and foreseeable supercomputers. The issue revolves around the number of degrees of freedom of simultaneous equations that one needs to accurately describe the problem, and the computer storage and speed limitations which prohibit such solutions. The goals of tHis symposium were to explore some of the latest work being done in both industry and academia to solve such extremely large problems, and to provide a forum for the discussion and prognostication of necessary future direc tions of both man and machine. As evidenced in this proceedings we believe these goals were met. Contained in this volume are discussions of: iterative solvers, and their application to a variety of problems, e.g. structures, fluid dynamics, and structural acoustics; iterative dynamic substructuring and its use in structural acoustics; the use of the boundary element method both alone and in conjunction with the finite element method; the application of finite difference methods to problems of incompressible, turbulent flow; and algorithms amenable to concurrent computations and their applications. Furthermore, discussions of existing computational shortcomings from the big picture point of view are presented that include recommendations for future work.
Download or read book The Lanczos and Conjugate Gradient Algorithms written by Gerard Meurant and published by SIAM. This book was released on 2006-08-01 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Numerical Methods for Mixed Finite Element Problems written by Jean Deteix and published by Springer Nature. This book was released on 2022-09-24 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on iterative solvers and preconditioners for mixed finite element methods. It provides an overview of some of the state-of-the-art solvers for discrete systems with constraints such as those which arise from mixed formulations. Starting by recalling the basic theory of mixed finite element methods, the book goes on to discuss the augmented Lagrangian method and gives a summary of the standard iterative methods, describing their usage for mixed methods. Here, preconditioners are built from an approximate factorisation of the mixed system. A first set of applications is considered for incompressible elasticity problems and flow problems, including non-linear models. An account of the mixed formulation for Dirichlet’s boundary conditions is then given before turning to contact problems, where contact between incompressible bodies leads to problems with two constraints. This book is aimed at graduate students and researchers in the field of numerical methods and scientific computing.
Download or read book Numerical Algebra Matrix Theory Differential Algebraic Equations and Control Theory written by Peter Benner and published by Springer. This book was released on 2015-05-09 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
Download or read book The Finite Element Method in Heat Transfer and Fluid Dynamics Third Edition written by J. N. Reddy and published by CRC Press. This book was released on 2010-04-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.
Download or read book Finite Element Methods written by Duc Thai Nguyen and published by Springer Nature. This book was released on with total page 813 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical Programming of Finite Element Procedures for Solids and Structures with MATLAB written by Salar Farahmand-Tabar and published by Elsevier. This book was released on 2023-09-22 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Programming of Finite Element Procedures for Solids and Structures with MATLAB: From Elasticity to Plasticity provides readers with step-by-step programming processes and applications of the finite element method (FEM) in MATLAB®, as well as the underlying theory. The hands-on approach covers a number of structural problems such as linear analysis of solids and structural elements, as well as nonlinear subjects including elastoplasticity and hyperelasticity. Each chapter begins with foundational topics to provide a solid understanding of the subject, then progresses to more complicated problems with supporting examples for constructing the appropriate program. This book focuses on topics commonly encountered in civil, mechanical, and aerospace engineering. Special situations in structural analysis, 2D and 3D solids with various mesh elements, surface and body loading, incremental solution process, elastoplasticity, and finite deformation hyperelastic analysis are covered. Code that can be implemented and further extended is also provided. - Covers both theory and practice of the finite element method (FEM) - Hands-on approach that provides a variety of both simple and complex problems for readers - Includes MATLAB® codes that can be immediately implemented as well as extended by readers to improve their own FEM skills - Provides special cases of structural analysis, elastoplasticity and hyperelasticity problems
Download or read book Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics written by Howard C. Elman and published by OUP Oxford. This book was released on 2005-05-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors' intended audience is at the level of graduate students and researchers, and we believe that the text offers a valuable contribution to all finite element researchers who would like to broadened both their fundamental and applied knowledge of the field. - Spencer J. Sherwin and Robert M. Kirby, Fluid Mechanics, Vol 557, 2006.
Download or read book Recent Advances in Iterative Methods written by Gene Golub and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications RECENT ADVANCES IN ITERATIVE METHODS is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra. " Large systems of matrix equations arise frequently in applications and they have the prop erty that they are sparse and/or structured. The purpose of this workshop was to bring together researchers in numerical analysis and various ap plication areas to discuss where such problems arise and possible meth ods of solution. The last two days of the meeting were a celebration dedicated to Gene Golub on the occasion of his sixtieth birthday, with the program arranged by Jack Dongarra and Paul van Dooren. We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Gene Golub, Anne Greenbaum, and Mitchell Luskin for organizing this workshop and editing the proceed ings. The financial support of the National Science Foundation and the Min nesota Supercomputer Institute made the workshop possible. A vner Friedman Willard Miller, Jr. xi PREFACE The solution of very large linear algebra problems is an integral part of many scientific computations.
Download or read book Proceedings of the International Conference on Numerical Methods in Engineering Theory and Applications NUMETA 87 Swansea 6 10 July 1987 written by J. Middleton and published by . This book was released on 1987 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Iterative Methods for Large Linear Systems written by David R. Kincaid and published by Academic Press. This book was released on 2014-05-10 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Methods for Large Linear Systems contains a wide spectrum of research topics related to iterative methods, such as searching for optimum parameters, using hierarchical basis preconditioners, utilizing software as a research tool, and developing algorithms for vector and parallel computers. This book provides an overview of the use of iterative methods for solving sparse linear systems, identifying future research directions in the mainstream of modern scientific computing with an eye to contributions of the past, present, and future. Different iterative algorithms that include the successive overrelaxation (SOR) method, symmetric and unsymmetric SOR methods, local (ad-hoc) SOR scheme, and alternating direction implicit (ADI) method are also discussed. This text likewise covers the block iterative methods, asynchronous iterative procedures, multilevel methods, adaptive algorithms, and domain decomposition algorithms. This publication is a good source for mathematicians and computer scientists interested in iterative methods for large linear systems.
Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1993 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear Computational Mechanics written by P. Wriggers and published by . This book was released on 1991 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of Computational Mechanics has grown very rapidly during the last decade. This is due to the fact that modern engineering design needs complex models which can only be analyzed and simulated on powerful computers and workstations using numerical methods like finite element, boundary element or finite difference techniques. This volume presents an overview of current research areas representing the state-of-the-art in the field of nonlinear computational mechanics. The areas considered in more detail include the mathematical theory and numerical algorithms, nonlinear finite element procedures, boundary element techniques, beam, plate and shell formulations, inelastic constitutive models and contact formulations. The reader who is new in the field will get a fresh insight in current research areas which are of worldwide interest. For the reader who is already working in the field of Computational Mechanics this volume presents aspects concerning the latest developments within this area.
Download or read book Iterative Solution of Large Sparse Systems of Equations written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the description of the state of modern iterative techniques together with systematic analysis. The first chapters discuss the classical methods. Comprehensive chapters are devoted to semi-iterative techniques (Chebyshev methods), transformations, incomplete decompositions, gradient and conjugate gradient methods, multi-grid methods and domain decomposition techniques (including e.g. the additive and multiplicative Schwartz method). In contrast to other books all techniques are described algebraically. For instance, for the domain decomposition method this is a new but helpful approach. Every technique described is illustrated by a Pascal program applicable to a class of model problem.