EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Soliton Equations And Hamiltonian Systems  Second Edition

Download or read book Soliton Equations And Hamiltonian Systems Second Edition written by Leonid A Dickey and published by World Scientific. This book was released on 2003-01-17 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.Besides its obvious practical use, this theory is attractive also because it satisfies the aesthetic need in a beautiful formula which is so inherent to mathematics.The second edition is up-to-date and differs from the first one considerably. One third of the book (five chapters) is completely new and the rest is refreshed and edited.

Book Soliton Equations And Hamiltonian Systems

Download or read book Soliton Equations And Hamiltonian Systems written by Leonid A Dickey and published by World Scientific. This book was released on 1991-09-02 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.This branch of science is attractive because it is one of those which revives the interest in the basic principles of mathematics, a beautiful formula.

Book Soliton Equations and Hamiltonian Systems

Download or read book Soliton Equations and Hamiltonian Systems written by Leonid A. Dickey and published by World Scientific. This book was released on 2003 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.Besides its obvious practical use, this theory is attractive also because it satisfies the aesthetic need in a beautiful formula which is so inherent to mathematics.The second edition is up-to-date and differs from the first one considerably. One third of the book (five chapters) is completely new and the rest is refreshed and edited.

Book Integrable Systems and Algebraic Geometry

Download or read book Integrable Systems and Algebraic Geometry written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-03-02 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.

Book Integrable Systems and Algebraic Geometry  Volume 2

Download or read book Integrable Systems and Algebraic Geometry Volume 2 written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.

Book Discrete Systems and Integrability

Download or read book Discrete Systems and Integrability written by J. Hietarinta and published by Cambridge University Press. This book was released on 2016-09 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.

Book The Diverse World of PDEs

    Book Details:
  • Author : I. S. Krasil′shchik
  • Publisher : American Mathematical Society
  • Release : 2023-08-21
  • ISBN : 1470471477
  • Pages : 250 pages

Download or read book The Diverse World of PDEs written by I. S. Krasil′shchik and published by American Mathematical Society. This book was released on 2023-08-21 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at the Independent University of Moscow and Moscow State University, Moscow, Russia. The papers are devoted to various interrelations of nonlinear PDEs with geometry and integrable systems. The topics discussed are: gravitational and electromagnetic fields in General Relativity, nonlocal geometry of PDEs, Legendre foliated cocycles on contact manifolds, presymplectic gauge PDEs and Lagrangian BV formalism, jet geometry and high-order phase transitions, bi-Hamiltonian structures of KdV type, bundles of Weyl structures, Lax representations via twisted extensions of Lie algebras, energy functionals and normal forms of knots, and differential invariants of inviscid flows. The companion volume (Contemporary Mathematics, Volume 789) is devoted to Algebraic and Cohomological Aspects of PDEs.

Book Geometric Analysis of Nonlinear Partial Differential Equations

Download or read book Geometric Analysis of Nonlinear Partial Differential Equations written by Valentin Lychagin and published by MDPI. This book was released on 2021-09-03 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of twelve papers that reflect the state of the art of nonlinear differential equations in modern geometrical theory. It comprises miscellaneous topics of the local and nonlocal geometry of differential equations and the applications of the corresponding methods in hydrodynamics, symplectic geometry, optimal investment theory, etc. The contents will be useful for all the readers whose professional interests are related to nonlinear PDEs and differential geometry, both in theoretical and applied aspects.

Book An Introduction to the Mathematical Structure of Quantum Mechanics

Download or read book An Introduction to the Mathematical Structure of Quantum Mechanics written by F. Strocchi and published by World Scientific. This book was released on 2005 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich-Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.

Book Glimpses of Soliton Theory

Download or read book Glimpses of Soliton Theory written by Alex Kasman and published by American Mathematical Soc.. This book was released on 2010 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --

Book Geometry of Algebraic Curves

Download or read book Geometry of Algebraic Curves written by Enrico Arbarello and published by Springer Science & Business Media. This book was released on 2011-03-10 with total page 983 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material is of value to students who wish to learn the subject and to experts as a reference source. The first volume appeared 1985 as vol. 267 of the same series.

Book Multi Hamiltonian Theory of Dynamical Systems

Download or read book Multi Hamiltonian Theory of Dynamical Systems written by Maciej Blaszak and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a modern introduction to the Hamiltonian theory of dynamical systems, presenting a unified treatment of all types of dynamical systems, i.e., finite, lattice, and field. Particular attention is paid to nonlinear systems that have more than one Hamiltonian formulation in a single coordinate system. As this property is closely related to integrability, this book presents an algebraic theory of integrable.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 1228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometric and Algebraic Structures in Differential Equations

Download or read book Geometric and Algebraic Structures in Differential Equations written by P.H. Kersten and published by Springer Science & Business Media. This book was released on 1995-11-30 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometrical theory of nonlinear differential equations originates from classical works by S. Lie and A. Bäcklund. It obtained a new impulse in the sixties when the complete integrability of the Korteweg-de Vries equation was found and it became clear that some basic and quite general geometrical and algebraic structures govern this property of integrability. Nowadays the geometrical and algebraic approach to partial differential equations constitutes a special branch of modern mathematics. In 1993, a workshop on algebra and geometry of differential equations took place at the University of Twente (The Netherlands), where the state-of-the-art of the main problems was fixed. This book contains a collection of invited lectures presented at this workshop. The material presented is of interest to those who work in pure and applied mathematics and especially in mathematical physics.

Book Soliton Equations and Hamiltonian Systems

Download or read book Soliton Equations and Hamiltonian Systems written by L.A. Dickey and published by World Scientific. This book was released on 1991 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.

Book Hamiltonian Methods in the Theory of Solitons

Download or read book Hamiltonian Methods in the Theory of Solitons written by Ludwig Faddeev and published by Springer Science & Business Media. This book was released on 2007-08-10 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.

Book Soliton Theory

    Book Details:
  • Author : Allan P. Fordy
  • Publisher : Manchester University Press
  • Release : 1990
  • ISBN : 9780719014918
  • Pages : 472 pages

Download or read book Soliton Theory written by Allan P. Fordy and published by Manchester University Press. This book was released on 1990 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introduction to the complete range of soliton theory including Hirota's method and Backlund transformations. Details physical applications of soliton theory with chapters on the peculiar wave patterns of the Andaman Sea, atmospheric phenomena, general relativity and Davydov solitons. Contains testing for full integrability, a discussion of the Painlevé technique, symmetries and conservation law.