EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Solar Energy Harvesting  Conversion  and Storage

Download or read book Solar Energy Harvesting Conversion and Storage written by Mohammad Khalid and published by Elsevier. This book was released on 2023-04-29 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Energy Harvesting, Conversion, and Storage: Materials, Technologies, and Applications focuses on the current state of solar energy and the recent advancements in nanomaterials for different technologies, from harnessing energy to storage. The book covers different aspects of advanced nanomaterials for solar energy, rapid developments in solar thermal and hot water systems, and PV and CSP technologies. In addition, sections cover storing harnessed solar/heat energy using different available energy storage technologies, including phase change materials (PCMs), batteries, and supercapacitors. Various applications such as agriculture and aquaculture, desalination, domestic appliances, and transport are also explored. Provides an overview of solar energy harvesting technologies, energy storage technologies, and the role of advanced nanomaterials in solar energy Explores applications of technology in the fields of agriculture, aquaculture, desalination and transport Includes discussion of current policies, strategies and socioeconomic analysis and challenges

Book Energy Harvesting

    Book Details:
  • Author : Alireza Khaligh
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351834029
  • Pages : 457 pages

Download or read book Energy Harvesting written by Alireza Khaligh and published by CRC Press. This book was released on 2017-12-19 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Book Materials in Energy Conversion  Harvesting  and Storage

Download or read book Materials in Energy Conversion Harvesting and Storage written by Kathy Lu and published by John Wiley & Sons. This book was released on 2014-08-07 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.

Book Energy Harvesting

    Book Details:
  • Author : Alireza Khaligh
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1439815097
  • Pages : 382 pages

Download or read book Energy Harvesting written by Alireza Khaligh and published by CRC Press. This book was released on 2017-12-19 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Book Thin Films for Energy Harvesting  Conversion  and Storage

Download or read book Thin Films for Energy Harvesting Conversion and Storage written by Zhong Chen and published by MDPI. This book was released on 2019-11-07 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

Book Solar Energy Conversion and Storage

Download or read book Solar Energy Conversion and Storage written by Suresh C. Ameta and published by CRC Press. This book was released on 2015-11-05 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Energy Conversion and Storage: Photochemical Modes showcases the latest advances in solar cell technology while offering valuable insight into the future of solar energy conversion and storage. Focusing on photochemical methods of converting and/or storing light energy in the form of electrical or chemical energy, the book:Describes various t

Book Solar to Chemical Energy Conversion

Download or read book Solar to Chemical Energy Conversion written by Masakazu Sugiyama and published by Springer. This book was released on 2016-01-25 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the conversion of solar energy to chemical energy and its storage. It covers the basic background; interface modeling at the reacting surface; energy conversion with chemical, electrochemical and photoelectrochemical approaches and energy conversion using applied photosynthesis. The important concepts for converting solar to chemical energy are based on an understanding of the reactions’ equilibrium and non-equilibrium conditions. Since the energy conversion is essentially the transfer of free energy, the process are explained in the context of thermodynamics.

Book Sustainable Materials and Green Processing for Energy Conversion

Download or read book Sustainable Materials and Green Processing for Energy Conversion written by Kuan Yew Cheong and published by Elsevier. This book was released on 2021-10-05 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices

Book Organic electronic devices for solar energy conversion and storage

Download or read book Organic electronic devices for solar energy conversion and storage written by Yingzhi Jin and published by Linköping University Electronic Press. This book was released on 2020-08-19 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on two types of organic electronic devices: organic photovoltaic (OPV) devices for solar energy conversion, and photo-capacitors for energy storage. OPVs have been under the focus of research for decades as an effective technique to convert solar energy to electricity. So far, the efficiency of bulk heterojunction OPV consisting donor and acceptor materials is approaching to 18% with non-fullerene acceptor (NFA), which make it close to commercialization. The process of charge generation and recombination are two competing processes in OPVs, since their requirements for the active layer morphology are contradictory. Large donor/acceptor interfaces facilitate charge generation but hinder the transporting pathways for charge transportation. The simultaneously enhanced charge generation and transportation are achieved by using the ternary strategy in my first paper. The fully mixed donors and NFAs are beneficial for the charge generation and fullerene is introduced as an extra electron transport channel. The hierarchical morphology of the blend film is confirmed by the TEM results. The voltage loss analyses indicate that the hierarchical morphology could suppress unfavorable charge transfer state and non-radiative recombination loss. In my second paper, efficient charge generation with low voltage loss are achieved in the solar cells by rational designing a series of NFAs. The detailed voltage losses are discussed in these binary systems, revealing the critical relationship between radiative efficiency and device performance. To harvest photocurrent in OPVs, long lifetime triplet excitons are highly expected to be good candidates. The potential of triplet materials in OPVs has been explored since 1970s. However, the performance of the triplet materials-based OPVs is far behind. The voltage loss in triplet OPVs is intensively studied in my third work. A higher open circuit voltage (0.88 V) is observed for Ir(FOtbpa)3-based devices than those of Ir(Ftbpa)3 (0.80 V) despite a lower charge transfer state energy. To understand above result, the voltage losses through radiative and non-radiative recombination pathways in two devices are quantitively investigated, which indicate a reduced non-radiative recombination loss in the Ir(FOtbpa)3-based devices. The fluctuation of sun irradiation resulting the unstable output power of solar cells. Therefore, it is important to store electricity of solar cells for later use. Integrated photo-capacitor (IPC), combining a solar cell and a super-capacitor by sharing one common electrode, is able to simultaneously realize the energy harvesting and storage. Building upon this advantage, IPC devices received tremendous research attention. In my fourth and last papers, we introduced super-capacitors to construct IPC devices with OPV device or modules. A free standing thick- PEDOT:PSS film is successfully integrated into an all solution-processed IPC device as the common electrode. Resulting devices demonstrate good performance and outstanding stability. With solar PV modules, a higher voltage can be generated and stored by asymmetric supercapacitors, which could be used as a portable power unit.

Book Hybrid and Fully Thermoelectric Solar Harvesting

Download or read book Hybrid and Fully Thermoelectric Solar Harvesting written by Dario Narducci and published by Springer. This book was released on 2018-03-26 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview on fully thermal and hybrid solar generators based on thermoelectric devices. The book fills a gap in the literature on solar conversion and thermoelectrics, because despite the growing number of papers dealing with the use of thermoelectrics in solar power conversion, no book exists for PV specialists or thermoelectricity experts to enter this field. The book is intended as a primer for scientists or engineers willing to complement their expertise in one of the two fields, and to get an updated, critical review of the state of the art in thermoelectric solar harvesting.

Book Molecular Devices for Solar Energy Conversion and Storage

Download or read book Molecular Devices for Solar Energy Conversion and Storage written by Haining Tian and published by Springer. This book was released on 2017-09-14 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows the different molecular devices used for solar energy conversion and storage and the important characterization techniques for this kind of device. It has five chapters describing representative molecule-based solar cells, such as organic solar cells, dye-sensitized solar cells and hybrid solar cells (perovskite solar cell and quantum dots solar cells). It also includes two chapters demonstrating the use of molecular devices in the areas of solar fuel, water splitting and carbon dioxide reduction. There are further two chapters with interesting examples of solar energy storage related devices, like solar flow battery, solar capacitor and solar energy-thermal energy storage. Three chapters introduce important techniques used to characterize, investigate and evaluate the mechanism of molecular devices. The final chapter discusses the stability of perovskite solar cells. This book is relevant for a wide readership, and is particularly useful for students, researchers and industrial professionals who are working on molecular devices for solar energy utilization.

Book The Physics of Solar Energy Conversion

Download or read book The Physics of Solar Energy Conversion written by Juan Bisquert and published by CRC Press. This book was released on 2020-06-09 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on advanced energy conversion devices such as solar cells has intensified in the last two decades. A broad landscape of candidate materials and devices were discovered and systematically studied for effective solar energy conversion and utilization. New concepts have emerged forming a rather powerful picture embracing the mechanisms and limitation to efficiencies of different types of devices. The Physics of Solar Energy Conversion introduces the main physico-chemical principles that govern the operation of energy devices for energy conversion and storage, with a detailed view of the principles of solar energy conversion using advanced materials. Key Features include: Highlights recent rapid advances with the discovery of perovskite solar cells and their development. Analyzes the properties of organic solar cells, lithium ion batteries, light emitting diodes and the semiconductor materials for hydrogen production by water splitting. Embraces concepts from nanostructured and highly disordered materials to lead halide perovskite solar cells Takes a broad perspective and comprehensively addresses the fundamentals so that the reader can apply these and assess future developments and technologies in the field. Introduces basic techniques and methods for understanding the materials and interfaces that compose operative energy devices such as solar cells and solar fuel converters.

Book Micro Energy Harvesting

Download or read book Micro Energy Harvesting written by Danick Briand and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Book Energy Harvesting Technologies

Download or read book Energy Harvesting Technologies written by Shashank Priya and published by Springer Science & Business Media. This book was released on 2008-11-28 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

Book Sustainable Energy Harvesting

Download or read book Sustainable Energy Harvesting written by Ted Weyland and published by . This book was released on 2016-06-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy harvesting refers to the process by which energy is extracted from vast sources and stored for use by low-energy devices. The subjects discussed in this book that address the various aspects which fall under this field are energy conversion and storage, designing energy efficient systems, developing advanced technologies for enhancing extraction of renewable energy, etc. As this field is emerging at a rapid pace, the contents of this book will help the readers understand the modern concepts and applications of the subject. It will prove to be an invaluable resource for academicians and professionals alike.

Book Solar Energy

    Book Details:
  • Author : Richard R. Hautala
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461262453
  • Pages : 422 pages

Download or read book Solar Energy written by Richard R. Hautala and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intense current interest in the development of solar energy as a viable energy alternative comes as no surprise in view of the widespread awareness of impending world-wide energy shortages. After all, the magnitude of energy available from the sun is impressive, its diffuseness and intermittent nature notwithstanding. The fact that, as a source, it represents a constant and inex haustible supply of energy is alluring. The fact that most solar application schemes are nonpolluting in nature is an attractive bonus. In spite of these impressive attributes, research and development in the area of solar energy is in its infancy, owing largely to the prior lack of any need to exploit such diffuse sources. Indeed efforts in this area have traditionally been within the province of solid-state physics and engineering. The problems associated with efficient light harvesting and storage, however, are not simply technological ones. Effec tive solutions to these problems appear to lie beyond the current forefront of the chemical sciences. Consequently input fr9m scientists previously engaged in fundamental chemistry has begun to emerge. Thus many of the contributions in this volume represent input from research groups with a relatively short history of involvement in solar energy. On the other hand, the long-standing and perceptive commitment of Professor Melvin Calvin to research involving solar energy represents the other extreme. This volume covers a variety of approaches to the problem of efficiently converting and storing solar energy.

Book Indoor Photovoltaics

    Book Details:
  • Author : Monika Freunek Muller
  • Publisher : John Wiley & Sons
  • Release : 2020-11-12
  • ISBN : 1119605741
  • Pages : 304 pages

Download or read book Indoor Photovoltaics written by Monika Freunek Muller and published by John Wiley & Sons. This book was released on 2020-11-12 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first and most comprehensive guide on the modeling, engineering and reliable design of indoor photovoltaics which currently is the most promising and energy efficient power supply for edge nodes for the Internet of Things and other indoor devices. Indoor photovoltaics (IPV) has grown in importance over recent years. This can in part be attributed to the creation of the Internet of Things (IoT) and Artificial Intelligence (AI) along with the vast amounts of data being processed in the field, which has been a massive accelerator for this development. Moreover, since energy conservation is being imposed as the national strategy of many countries and is being set as a top priority throughout the world, understanding and promoting IPV as the most promising indoor energy harvesting source is considered by many to be essential these days. The book provides the engineer and researcher with guidelines, and presents a comprehensive overview of theoretical models, efficiencies, and application design. This unique and groundbreaking book has chapters by leading researchers on: Introduction to micro energy harvesting Introduction to indoor photovoltaics Modeling indoor irradiance Characterization and power measurement of IPV cells Luminescent solar concentrators Organic photovoltaic cells and modules for applications under indoor lighting conditions High-efficiency indoor photovoltaic energy harvesting Indoor photovoltaics based on ALGAAs alloys