Download or read book Soft Computing Based Medical Image Analysis written by Nilanjan Dey and published by Academic Press. This book was released on 2018-01-18 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. - Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence - Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain - Highlights challenges and the future scope for soft computing based medical analysis and processing techniques
Download or read book Neutrosophic Set in Medical Image Analysis written by Yanhui Guo and published by Academic Press. This book was released on 2019-08-08 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutrosophic Set in Medical Image Analysis gives an understanding of the concepts of NS, along with knowledge on how to gather, interpret, analyze and handle medical images using NS methods. It presents the latest cutting-edge research that gives insight into neutrosophic set's novel techniques, strategies and challenges, showing how it can be used in biomedical diagnoses systems. The neutrosophic set (NS), which is a generalization of fuzzy set, offers the prospect of overcoming the restrictions of fuzzy-based approaches to medical image analysis. - Introduces the mathematical model and concepts of neutrosophic theory and methods - Highlights the different techniques of neutrosophic theory, focusing on applying the neutrosophic set in image analysis to support computer- aided diagnosis (CAD) systems, including approaches from soft computing and machine learning - Shows how NS techniques can be applied to medical image denoising, segmentation and classification - Provides challenges and future directions in neutrosophic set based medical image analysis
Download or read book Fuzzy Systems in Bioinformatics and Computational Biology written by Yaochu Jin and published by Springer Science & Business Media. This book was released on 2009-04-15 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In recent years, fuzzy logic based modeling and analysis approaches are also becoming popular in analyzing biological data and modeling biological systems. Numerous research and application results have been reported that demonstrated the effectiveness of fuzzy logic in solving a wide range of biological problems found in bioinformatics, biomedical engineering, and computational biology. Contributed by leading experts world-wide, this edited book contains 16 chapters presenting representative research results on the application of fuzzy systems to genome sequence assembly, gene expression analysis, promoter analysis, cis-regulation logic analysis and synthesis, reconstruction of genetic and cellular networks, as well as biomedical problems, such as medical image processing, electrocardiogram data classification and anesthesia monitoring and control. This volume is a valuable reference for researchers, practitioners, as well as graduate students working in the field of bioinformatics, biomedical engineering and computational biology.
Download or read book Machine Learning in Bio Signal Analysis and Diagnostic Imaging written by Nilanjan Dey and published by Academic Press. This book was released on 2018-11-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
Download or read book MEDICAL IMAGE PROCESSING written by G.R. SINHA and published by PHI Learning Pvt. Ltd.. This book was released on 2014-01-20 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical Image Processing: Concepts and Applications presents an overview of image processing for various applications in the field of medical science. Inclusion of several topics like noise reduction filters, feature extraction, image restoration, segmentation, soft computing techniques and context-based medical image retrieval, etc. makes this book a single-source information meeting the requirements of the readers. Besides, the coverage of digital image processing, human visual perception and CAD system to be used in automated diagnosis system, medical imaging modalities, various application areas of medical field, detection and classification of various disease, etc. is highly emphasised in the book. The book, divided into eight chapters, presents the topics in a clear, simple, practical and cogent fashion that provides the students with the insight into theory as well as applications to the practical problems. The research orientation of the book greatly supports the concepts of image processing to be applied for segmentation, classification and detection of affected areas in X-ray, MRI and mammographic and all other medical images. Throughout the book, an attempt has been made to address the challenges faced by radiologists, physicians and doctors in scanning, interpretation and diagnosis process. The book uses an abundance of colour images to impart a high level of comprehension of concepts and helps in mastering the process of medical image processing. Special attention is made on the review of algorithms or methods of medical image formation, processing and analysis, medical imaging applications, and emerging medical imaging modality. This is purely a text dedicated for the undergraduate and postgraduate students of biomedical engineering. The book is also of immense use to the students of computer science engineering and IT who offer a course on digital image processing. Key Points • Chapter-end review questions test the students’ knowledge of the funda-mental concepts. • Course outcomes help the students in capturing the key points. • Several images and information regarding morphological operations given in appendices help in getting additional knowledge in the field of medical image processing.
Download or read book Rough Fuzzy Pattern Recognition written by Pradipta Maji and published by John Wiley & Sons. This book was released on 2012-02-14 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.
Download or read book Histopathological Image Analysis in Medical Decision Making written by Dey, Nilanjan and published by IGI Global. This book was released on 2018-09-21 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging technologies play a significant role in visualization and interpretation methods in medical diagnosis and practice using decision making, pattern classification, diagnosis, and learning. Progressions in the field of medical imaging lead to interdisciplinary discovery in microscopic image processing and computer-assisted diagnosis systems, and aids physicians in the diagnosis and early detection of diseases. Histopathological Image Analysis in Medical Decision Making provides emerging research exploring the theoretical and practical applications of image technologies and feature extraction procedures within the medical field. Featuring coverage on a broad range of topics such as image classification, digital image analysis, and prediction methods, this book is ideally designed for medical professionals, system engineers, medical students, researchers, and medical practitioners seeking current research on problem-oriented processing techniques in imaging technologies.
Download or read book Soft Computing in Image Processing written by Mike Nachtegael and published by Springer. This book was released on 2007-06-24 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Images have always been very important in human life. Their applications range from primitive communication between humans of all ages to advanced technologies in the industrial, medical and military field. The increased possibilities to capture and analyze images have contributed to the largeness that the scientific field of "image processing" has become today. Many techniques are being applied, including soft computing. "Soft Computing in Image Processing: Recent Advances" follows the edited volumes "Fuzzy Techniques in Image Processing" (volume 52, published in 2000) and "Fuzzy Filters for Image Processing" (volume 122, published in 2003), and covers a wide range of both practical and theoretical applications of soft computing in image processing. The 16 excellent chapters of the book have been grouped into five parts: Applications in Remote Sensing, Applications in Image Retrieval, Applications in Image Analysis, Other Applications, and Theoretical Contributions. The focus of the book is on practical applications, which makes it interesting for every researcher that is involved with soft computing, image processing, or both scientific branches.
Download or read book Medical Image Processing written by Satya Prakash Yadav and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-09-23 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to facilitate and stimulate cross-disciplinary research in the emerging paradigm of Medical Imaging. Especially this book is to focus on analysing and articulating proven and potential security measures to tightly secure Medical Image applications and services, which are being hosted and delivered through cloud infrastructures and platforms. This book will illustrate the prominent advancements in image processing and how intelligent image-processing techniques can be developed and deployed in the industrial market and for academicians. The readers will get to know all the right and relevant details to be empowered to successfully contribute to their personal and professional growth. The main focus of this book is to bring all the related technologies, novel findings, and managerial applications of Medical Imaging on a single platform to provide great readability, easy understanding, and smooth adaptability of various basic and advanced concepts to Researchers in Medical Engineers, Machine Learning and Data Analysis.
Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-11-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Download or read book Biologically Rationalized Computing Techniques For Image Processing Applications written by Jude Hemanth and published by Springer. This book was released on 2017-08-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to innovative bio-inspired computing techniques for image processing applications. It demonstrates how a significant drawback of image processing – not providing the simultaneous benefits of high accuracy and less complexity – can be overcome, proposing bio-inspired methodologies to help do so. Besides computing techniques, the book also sheds light on the various application areas related to image processing, and weighs the pros and cons of specific methodologies. Even though several such methodologies are available, most of them do not provide the simultaneous benefits of high accuracy and less complexity, which explains their low usage in connection with practical imaging applications, such as the medical scenario. Lastly, the book illustrates the methodologies in detail, making it suitable for newcomers to the field and advanced researchers alike.
Download or read book Computational Intelligence and Soft Computing Applications in Healthcare Management Science written by Gul, Muhammet and published by IGI Global. This book was released on 2020-03-06 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s modernized world, the field of healthcare has seen significant practical innovations with the implementation of computational intelligence approaches and soft computing methods. These two concepts present various solutions to complex scientific problems and imperfect data issues. This has made both very popular in the medical profession. There are still various areas to be studied and improved by these two schemes as healthcare practices continue to develop. Computational Intelligence and Soft Computing Applications in Healthcare Management Science is an essential reference source that discusses the implementation of soft computing techniques and computational methods in the various components of healthcare, telemedicine, and public health. Featuring research on topics such as analytical modeling, neural networks, and fuzzy logic, this book is ideally designed for software engineers, information scientists, medical professionals, researchers, developers, educators, academicians, and students.
Download or read book Handbook of Medical Image Computing and Computer Assisted Intervention written by S. Kevin Zhou and published by Academic Press. This book was released on 2019-10-18 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
Download or read book Medical Big Data and Internet of Medical Things written by Aboul Ella Hassanien and published by CRC Press. This book was released on 2018-10-25 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data and the Internet of Things (IoT) play a vital role in prediction systems used in biological and medical applications, particularly for resolving issues related to disease biology at different scales. Modelling and integrating medical big data with the IoT helps in building effective prediction systems for automatic recommendations of diagnosis and treatment. The ability to mine, process, analyse, characterize, classify and cluster a variety and wide volume of medical data is a challenging task. There is a great demand for the design and development of methods dealing with capturing and automatically analysing medical data from imaging systems and IoT sensors. Addressing analytical and legal issues, and research on integration of big data analytics with respect to clinical practice and clinical utility, architectures and clustering techniques for IoT data processing, effective frameworks for removal of misclassified instances, practicality of big data analytics, methodological and technical issues, potential of Hadoop in managing healthcare data is the need of the hour. This book integrates different aspects used in the field of healthcare such as big data, IoT, soft computing, machine learning, augmented reality, organs on chip, personalized drugs, implantable electronics, integration of bio-interfaces, and wearable sensors, devices, practical body area network (BAN) and architectures of web systems. Key Features: Addresses various applications of Medical Big Data and Internet of Medical Things in real time environment Highlights recent innovations, designs, developments and topics of interest in machine learning techniques for classification of medical data Provides background and solutions to existing challenges in Medical Big Data and Internet of Medical Things Provides optimization techniques and programming models to parallelize the computationally intensive tasks in data mining of medical data Discusses interactions, advantages, limitations, challenges and future perspectives of IoT based remote healthcare monitoring systems. Includes data privacy and security analysis of cryptography methods for the Web of Medical Things (WoMT) Presents case studies on the next generation medical chair, electronic nose and pill cam are also presented.
Download or read book Medical Image Analysis written by Alejandro Frangi and published by Academic Press. This book was released on 2023-09-20 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Download or read book Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis written by Nilanjan Dey and published by Academic Press. This book was released on 2019-07-31 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis covers the most current advances on how to apply classification techniques to a wide variety of clinical applications that are appropriate for researchers and biomedical engineers in the areas of machine learning, deep learning, data analysis, data management and computer-aided diagnosis (CAD) systems design. The book covers several complex image classification problems using pattern recognition methods, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian Networks (BN) and deep learning. Further, numerous data mining techniques are discussed, as they have proven to be good classifiers for medical images. - Examines the methodology of classification of medical images that covers the taxonomy of both supervised and unsupervised models, algorithms, applications and challenges - Discusses recent advances in Artificial Neural Networks, machine learning, and deep learning in clinical applications - Introduces several techniques for medical image processing and analysis for CAD systems design
Download or read book Classification in BioApps written by Nilanjan Dey and published by Springer. This book was released on 2017-11-10 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on classification in biomedical image applications presents original and valuable research work on advances in this field, which covers the taxonomy of both supervised and unsupervised models, standards, algorithms, applications and challenges. Further, the book highlights recent scientific research on artificial neural networks in biomedical applications, addressing the fundamentals of artificial neural networks, support vector machines and other advanced classifiers, as well as their design and optimization. In addition to exploring recent endeavours in the multidisciplinary domain of sensors, the book introduces readers to basic definitions and features, signal filters and processing, biomedical sensors and automation of biomeasurement systems. The target audience includes researchers and students at engineering and medical schools, researchers and engineers in the biomedical industry, medical doctors and healthcare professionals.