Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities.
Download or read book Lectures on Analysis on Metric Spaces written by Juha Heinonen and published by Springer Science & Business Media. This book was released on 2001 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.
Download or read book New Trends on Analysis and Geometry in Metric Spaces written by Fabrice Baudoin and published by Springer Nature. This book was released on 2022-02-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
Download or read book Topics on Analysis in Metric Spaces written by Luigi Ambrosio and published by Oxford University Press, USA. This book was released on 2004 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.
Download or read book Sobolev Met Poincare written by Piotr Hajłasz and published by American Mathematical Soc.. This book was released on 2000 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are several generalizations of the classical theory of Sobolev spaces as they are necessary for the applications to Carnot-Caratheodory spaces, subelliptic equations, quasiconformal mappings on Carnot groups and more general Loewner spaces, analysis on topological manifolds, potential theory on infinite graphs, analysis on fractals and the theory of Dirichlet forms. The aim of this paper is to present a unified approach to the theory of Sobolev spaces that covers applications to many of those areas. The variety of different areas of applications forces a very general setting. We are given a metric space $X$ equipped with a doubling measure $\mu$. A generalization of a Sobolev function and its gradient is a pair $u\in L^{1}_{\rm loc}(X)$, $0\leq g\in L^{p}(X)$ such that for every ball $B\subset X$ the Poincare-type inequality $ \intbar_{B} u-u_{B} \, d\mu \leq C r ( \intbar_{\sigma B} g^{p}\, d\mu)^{1/p}\,$ holds, where $r$ is the radius of $B$ and $\sigma\geq 1$, $C>0$ are fixed constants. Working in the above setting we show that basically all relevant results from the classical theory have their counterparts in our general setting. These include Sobolev-Poincare type embeddings, Rellich-Kondrachov compact embedding theorem, and even a version of the Sobolev embedding theorem on spheres. The second part of the paper is devoted to examples and applications in the above mentioned areas.
Download or read book Newtonian Spaces written by Nageswari Shanmugalingam and published by . This book was released on 1999 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Download or read book A Differentiable Structure for Metric Measure Spaces written by Stephen Keith and published by . This book was released on 2002 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lectures on Nonsmooth Differential Geometry written by Nicola Gigli and published by Springer Nature. This book was released on 2020-02-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.
Download or read book A First Course in Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Soc.. This book was released on 2009 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.
Download or read book Sobolev Spaces in Mathematics I written by Vladimir Maz'ya and published by Springer. This book was released on 2010-11-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Download or read book Metric In Measure Spaces written by James J Yeh and published by World Scientific. This book was released on 2019-11-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measure and metric are two fundamental concepts in measuring the size of a mathematical object. Yet there has been no systematic investigation of this relation. The book closes this gap.
Download or read book Nonlinear Potential Theory on Metric Spaces written by Anders Björn and published by European Mathematical Society. This book was released on 2011 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.
Download or read book Sobolev Spaces on Riemannian Manifolds written by Emmanuel Hebey and published by Springer. This book was released on 2006-11-14 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several books deal with Sobolev spaces on open subsets of R (n), but none yet with Sobolev spaces on Riemannian manifolds, despite the fact that the theory of Sobolev spaces on Riemannian manifolds already goes back about 20 years. The book of Emmanuel Hebey will fill this gap, and become a necessary reading for all using Sobolev spaces on Riemannian manifolds. Hebey's presentation is very detailed, and includes the most recent developments due mainly to the author himself and to Hebey-Vaugon. He makes numerous things more precise, and discusses the hypotheses to test whether they can be weakened, and also presents new results.
Download or read book Orlicz Sobolev Spaces on Metric Measure Spaces written by Heli Tuominen and published by . This book was released on 2004 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: