EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Snowflake Divertor   a Possible Power Exhaust Solution for Magnetic Fusion

Download or read book Snowflake Divertor a Possible Power Exhaust Solution for Magnetic Fusion written by and published by . This book was released on 2012 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Snowflake Divertor

Download or read book The Snowflake Divertor written by and published by . This book was released on 2011 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Snowflake Divertor

Download or read book A Snowflake Divertor written by and published by . This book was released on 2008 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handling high power loads on plasma facing components is one of the critical issues in developing an economically competitive fusion reactor based on tokamak. In this study, we provide a detailed analysis of a relatively unexplored approach to this problem based on the use of divertors with the poloidal magnetic field structure closely approaching a second-order null. We demonstrate that this geometry opens up new possibilities for radiative divertors, has favorable effect on the convective transport, and provides an additional control over ELM activity. In the ideal case where the null is exactly second order, the separatrix near the null acquires a characteristic hexagonal shape reminiscent of a snowflake, whence the name of this configuration. It can be created by a simple set of divertor coils situated outside the toroidal field coils.

Book A  Snowflake  Divertor and Its Properties

Download or read book A Snowflake Divertor and Its Properties written by and published by . This book was released on 2007 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handling the power and particle exhaust in fusion reactors based on tokamaks is a challenging problem [1,2]. To bring the energy flux to the divertor plates to an acceptable level (

Book Innovative Divertor Development to Solve the Plasma Heat Flux Problem

Download or read book Innovative Divertor Development to Solve the Plasma Heat Flux Problem written by and published by . This book was released on 2009 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large, localized plasma heat exhaust continues to be one of the critical problems for the development of tokamak fusion reactors. Excessive heat flux erodes and possibly melts plasma-facing materials, thereby dramatically shortening their lifetime and increasing the impurity contamination of the core plasma. A detailed assessment by the ITER team for their divertor has revealed substantial limitations on the operational space imposed by the divertor performance. For a fusion reactor, the problem becomes worse in that the divertor must accommodate 20% of the total fusion power (less any broadly radiated loss), while not allowing excess buildup of tritium in the walls nor excessive impurity production. This is an extremely challenging set of problems that must be solved for fusion to succeed as a power source; it deserves a substantial research investment. Material heat-flux constraints: Results from present-day tokamaks show that there are two major limitations of peak plasma heat exhaust. The first is the continuous flow of power to the divertor plates and nearby surfaces that, for present technology, is limited to 10-20 MW/m2. The second is the transient peak heat-flux that can be tolerated in a short time, [tau]{sub m}, before substantial ablation and melting of the surface occurs; such common large transient events are Edge Localized Mode (ELMs) and disruptions. The material limits imposed by these events give a peak energy/[tau]{sub m}12 parameter of H"40 MJ/m2s12 [1]. Both the continuous and transient limits can be approached by input powers in the largest present-day devices, and future devices are expected to substantially exceed the limits unless a solution can be found. Since the early 90's LLNL has developed the analytic and computational foundation for analyzing divertor plasmas, and also suggested and studied a number of solid and liquid material concepts for improving divertor/wall performance, with the most recent being the Snowflake divertor concept [2] and generating Resonant Magnetic Perturbations by the SOL currents [3]. However, the specific approaches discussed here are part of a wider class of innovative divertor ideas that have come from the community in the last several years, and we certainly advocate the need to consider a range of options. Indeed, the most effective solution to the heat-flux problem may well contain features of various ideas. For example, there are the X-divertor (Kotschenreuther et al. [4]) that expands the magnetic flux surface in the vicinity of the near-X-point divertor plate, and the super X-divertor (Valanju et al. [5]) that guides the near-separatrix SOL flux tubes to a larger major radius to increase the surface area available for power deposition. These approaches have the common feature of manipulation of the edge magnetic geometry. Another approach is the use of liquid divertor surfaces that can increase the heat-flux capability by flowing the heated material to a cooling region and eventually out of the machine, and/or by being able to withstand a higher peak heat flux [6]. All of these areas are only emerging concepts that require substantially more analysis and definitive experimental tests, and given the need for a large improvement in this area, we advocate a substantial program to systematically assess the approaches. Because of space limitation here, we present some details of one of the concepts, namely the Snowflake divertor configuration. The Snowflake (SF) divertor [2] exploits a tokamak geometry in which the poloidal magnetic field varies quadratically with distance from the X-point null, [Delta]r. The name stems from the characteristic hexagonal, snowflake-like, shape of the multi-branched separatrix for this exact second-order null. In contrast, the standard X-point configuration has a poloidal field varying linearly with?r. The different variations mean that a flux expansion is much larger in the vicinity of a null of a snowflake divertor, and one can try to exploit this fact for reducing the divertor heat load. A unique feature here is also that the shear in the magnetic field near the X-point is substantially larger for the SF configuration, which may favorably affect microinstabilities and ELMs. Practical realization appears straightforward; the SF can be obtained using existing poloidal field coils in various present-day devices, and in general can be produced with coils located well outside the vacuum vessel. The SF configuration increases the flux expansion near the X-point that can be exploited by some increase in the plate wetted area, longer field-line length, and larger volume for impurity radiation. Initial UEDGE simulations comparing the SF with the standard divertor for the same conditions show a reduction in the peak heat flux for the SF of H".2-1.6 when comparing cases for the same angle of the total magnetic field to the divertor plate [7].

Book Final Report of the Committee on a Strategic Plan for U S  Burning Plasma Research

Download or read book Final Report of the Committee on a Strategic Plan for U S Burning Plasma Research written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-05-31 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Book Local Properties of the Magnetic Field in a Snowflake Divertor

Download or read book Local Properties of the Magnetic Field in a Snowflake Divertor written by and published by . This book was released on 2010 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Magnetic Field Structure of a Snowflake Divertor

Download or read book The Magnetic Field Structure of a Snowflake Divertor written by and published by . This book was released on 2008 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: The snowflake divertor exploits a tokamak geometry in which the poloidal magnetic field null approaches second order; the name stems from the characteristic hexagonal, snowflake-like, shape of the separatrix for an exact second-order null. The proximity of the poloidal field structure to that of a second-order null substantially modifies edge magnetic properties compared to the standard X-point geometry; this, in turn, affects the edge plasma behavior. Modifications include: (1) The flux expansion near the null-point becomes 2-3 times larger; (2) The connection length between the equatorial plane and divertor plate significantly increases; (3) Magnetic shear just inside the separatrix becomes much larger; and (4) In the open-field-line region, the squeezing of the flux-tubes near the null-point increases, thereby causing stronger decoupling of the plasma turbulence in the divertor legs and in the main SOL. These effects can be used to reduce the power load on the divertor plates and/or to suppress the 'bursty' component of the heat flux. It is emphasized that the snowflake divertor can be created by a relatively simple set of poloidal field coils situated beyond the toroidal field coils. Analysis of the robustness of the proposed divertor configuration with respect to changes of the plasma current distribution is presented and it is concluded that, even if the null is close to the second order, the configuration is quite robust.

Book Magnetic Configuration Flexibility of Snowflake Divertor for HL 2M  Analysis of Snowflake Divertor Configurations for HL 2M

Download or read book Magnetic Configuration Flexibility of Snowflake Divertor for HL 2M Analysis of Snowflake Divertor Configurations for HL 2M written by and published by . This book was released on 2014 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: HL-2M (Li, 2013 [1]) is a tokamak device that is under construction. Based on the magnetic coils design of HL-2M, four kinds of divertor configurations are calculated by CORSICA code (Pearlstein et al., 2001 [2]) with the same main plasma parameters, which are standard divertor, exact snowflake divertor, snowflake-plus divertor and snowflake-minus divertor configurations. The potential properties of these divertors are analyzed and presented in this paper: low poloidal field area around X-point, connection length from outside mid-plane to the primary X-point, target plate design and magnetic field shear. The results show that the snowflake configurations not only can reduce the heat load at divertor target plates, but also may improve the magneto-hydrodynamic stability by stronger magnetic shear at the edge. Furthermore, a new divertor configuration, named "tripod divertor", is designed by adjusting the positions of the two X-points according to plasma parameters and magnetic coils current of HL-2M.

Book Magnetic Fusion Technology

Download or read book Magnetic Fusion Technology written by Thomas J. Dolan and published by Springer Science & Business Media. This book was released on 2014-02-10 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Book Automated Magnetic Divertor Design for Optimal Power Exhaust

Download or read book Automated Magnetic Divertor Design for Optimal Power Exhaust written by Maarten Blommaert and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plasma Science

    Book Details:
  • Author : National Academies of Sciences Engineering and Medicine
  • Publisher :
  • Release : 2021-02-28
  • ISBN : 9780309677608
  • Pages : 291 pages

Download or read book Plasma Science written by National Academies of Sciences Engineering and Medicine and published by . This book was released on 2021-02-28 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Book Final Report of the Committee on a Strategic Plan for U S  Burning Plasma Research

Download or read book Final Report of the Committee on a Strategic Plan for U S Burning Plasma Research written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-07-01 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Book Plasma Surface Interactions in Controlled Fusion Devices

Download or read book Plasma Surface Interactions in Controlled Fusion Devices written by and published by . This book was released on 1978 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Science   Technology Review

Download or read book Science Technology Review written by and published by . This book was released on 2012 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: