Download or read book Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics written by Steinar Johannesen and published by Chapman & Hall/CRC. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covariant derivative of forms on principal bundles -- The curvature form -- Horizontal lifts of vector fields -- Local sections and trivializations -- Horizontal lifts of curves -- Parallel transport -- Forms in associated bundles -- Covariant derivative of sections in associated vector bundles -- Covariant derivative of tensor fields -- Covariant derivative of sections along smooth maps -- Linear connections -- Koszul connections -- Structure equations -- Geodesics -- Metrical connections -- The Schwarzschild - de Sitter spacetime -- Affine transformations and Killing vector fields -- Conformal transformations -- 11 ISOMETRIC IMMERSIONS AND THE SECOND FUNDAMENTAL FORM -- Connections in reduced subbundles -- The normal bundle and the bundle of adapted orthonormal frames -- The second fundamental form -- The shape tensor -- The shape operator -- The formulae of Gauss and Weingarten -- Strain and vorticity -- The equations of Gauss, Ricci and Codazzi -- Pseudo-Riemannian hypersurfaces -- The Robertson-Walker spacetime -- The Friedmann cosmological models -- 12 JET BUNDLES -- Bundles -- Affine bundles -- Derivations and the Frölicher-Nijenhuis bracket -- First order jet bundles -- Holonomic tangent vectors -- Contact cotangent vectors -- Jet fields and connections -- Equivariant jet fields -- Second order jet bundles -- Prolongation of vector fields -- Calculus of variations -- A: PRELIMINARIES -- Maps -- The permutation group -- Group actions -- Categories and functors -- Connectivity -- Homotopy theory -- Coverings -- Topological groups -- Topological vector spaces -- Bibliography -- Index
Download or read book Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics written by Steinar Johannesen and published by CRC Press. This book was released on 2016-12-08 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Written to be self-contained, this book provides complete and rigorous proofs of all the results presented within. Among the themes illustrated in the book are differentiable manifolds, differential forms, fiber bundles and differential geometry with non-trivial applications especially within the general theory of relativity. The emphasis is upon a systematic and logical construction of the mathematical foundations. It can be used as a textbook for a pure mathematics course in differential geometry, assuming the reader has a good understanding of basic analysis, linear algebra and point set topology. The book will also appeal to students of theoretical physics interested in the mathematical foundation of the theories.
Download or read book Differential Geometry and Mathematical Physics written by Gerd Rudolph and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Download or read book Fundamental Concepts In Modern Analysis An Introduction To Nonlinear Analysis Second Edition written by Vagn Lundsgaard Hansen and published by World Scientific. This book was released on 2019-11-07 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many applied mathematical disciplines, such as dynamical systems and optimization theory as well as classical mathematical disciplines like differential geometry and the theory of Lie groups, have a common foundation in general topology and multivariate calculus in normed vector spaces. In this book, students from both pure and applied subjects are offered an opportunity to work seriously with fundamental notions from mathematical analysis that are important not only from a mathematical point of view but also occur frequently in the theoretical parts of, for example, the engineering sciences. The book provides complete proofs of the basic results from topology and differentiability of mappings in normed vector spaces. It is a useful resource for students and researchers in mathematics and the many sciences that depend on fundamental techniques from mathematical analysis.In this second edition, the notions of compactness and sequentially compactness are developed with independent proofs for the main results. Thereby the material on compactness is apt for direct applications also in functional analysis, where the notion of sequentially compactness prevails. This edition also covers a new section on partial derivatives, and new material has been incorporated to make a more complete account of higher order derivatives in Banach spaces, including full proofs for symmetry of higher order derivatives and Taylor's formula. The exercise material has been reorganized from a collection of problem sets at the end of the book to a section at the end of each chapter with further results. Readers will find numerous new exercises at different levels of difficulty for practice.
Download or read book Introduction to Smooth Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Download or read book Topological Library Part 1 Cobordisms And Their Applications written by Serguei Petrovich Novikov and published by World Scientific. This book was released on 2007-07-09 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated “Singular homologies of fibre spaces.”This is the translation of the Russian edition published in 2005 with one entry (Milnor's lectures on the h-cobordism) omitted.
Download or read book Exotic Smoothness And Physics Differential Topology And Spacetime Models written by Torsten Asselmeyer-maluga and published by World Scientific. This book was released on 2007-01-23 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.
Download or read book Topology and Geometry for Physicists written by Charles Nash and published by Courier Corporation. This book was released on 2013-08-16 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.
Download or read book Differential Forms in Mathematical Physics written by and published by Elsevier. This book was released on 2009-06-17 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Forms in Mathematical Physics
Download or read book Lectures On Advanced Mathematical Methods For Physicists written by N Mukunda and published by World Scientific. This book was released on 2010-04-27 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics (including string theory), while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics.Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and de Rham cohomology as well as fibre bundles, particularly tangent and cotangent bundles.Part II starts with a review of group theory, followed by the basics of representation theory. A thorough description of Lie groups and algebras is presented with their structure constants and linear representations. Root systems and their classifications are detailed, and this section of the book concludes with the description of representations of simple Lie algebras, emphasizing spinor representations of orthogonal and pseudo-orthogonal groups.The style of presentation is succinct and precise. Involved mathematical proofs that are not of primary importance to physics student are omitted. The book aims to provide the reader access to a wide variety of sources in the current literature, in addition to being a textbook of advanced mathematical methods for physicists.
Download or read book Differential Geometric Structures written by Walter A. Poor and published by Courier Corporation. This book was released on 2015-04-27 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geometry Topology and Physics written by Mikio Nakahara and published by Taylor & Francis. This book was released on 2018-10-03 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
Download or read book The Geometry of Four manifolds written by S. K. Donaldson and published by Oxford University Press. This book was released on 1997 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an accessible account to the modern study of the geometry of four-manifolds. Prerequisites are a firm grounding in differential topology and geometry, as may be gained from the first year of a graduate course.
Download or read book Geometry and Quantum Physics written by H. Gausterer and published by Springer. This book was released on 2008-01-11 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern mathematical physics, classical together with quantum, geometrical and functional analytic methods are used simultaneously. Non-commutative geometry in particular is becoming a useful tool in quantum field theories. This book, aimed at advanced students and researchers, provides an introduction to these ideas. Researchers will benefit particularly from the extensive survey articles on models relating to quantum gravity, string theory, and non-commutative geometry, as well as Connes' approach to the standard model.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975 with total page 1166 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematics for Physics written by Michael Stone and published by Cambridge University Press. This book was released on 2009-07-09 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.