EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Slow Light and Adiabatic Bandwidth Variation in Semiconductor Nanostructures

Download or read book Slow Light and Adiabatic Bandwidth Variation in Semiconductor Nanostructures written by Hailin Wang and published by . This book was released on 2007 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have demonstrated a mechanism of tunable optical delay that takes advantage of the strong Coulomb interactions between excitons and free carriers and uses optical injection of free carriers to broaden and bleach an exciton absorption resonance. Fractional delay exceeding 200% has been obtained for an 8 ps optical pulse propagating near the heavy-hole excitonic transition in a GaAs quantum well (QW). We have also developed a scheme of using trions in mixed-type QW to realize a lamda-type three- level system for electron spin coherence in semiconductors.

Book Ultrabroad Bandwidth Slow Light in Semiconductor Nanostructures

Download or read book Ultrabroad Bandwidth Slow Light in Semiconductor Nanostructures written by and published by . This book was released on 2008 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Slow and fast light enables key functionality in various RF applications and all-optical networks. Semiconductor based schemes offer electrical control of velocity at very high bandwidths in an extremely compact device. Further they operate at room temperature and can be easily integrated into various optical systems. Ultra-fast non-linear processes in semiconductor optical amplifiers (SOAs) have been used to achieve tunable advance and delay at THz bandwidth. For a 700 fs pulse, we show electrically and optically controllable advance of 1.9 ps corresponding to an advance-bandwidth product (ABP) of 2.5. Further, by leveraging self-phase modulation in these devices we extend the performance to an ABP of 3.7. We develop comprehensive theory using density matrix approach to explain the experimental results. Our results show that an ultra-short pulse propagating through the SOA experiences non-linear index change due to spectral-hole burning and wave mixing between different spectral components. We derive analytical expressions for nonlinear index induced by these ultra-fast processes and numerically solve the propagation of an ultra-short pulse through the SOA. Our theoretical predictions agree very well with our experimental results. Finally, we show fast light for two ultra-short pulses separated by 7.2ps which demonstrates the feasibility of this scheme at high bit-rates.

Book Non linear Optical Properties of Semiconductor Nano structures for Slow Light and Wavelength Conversion

Download or read book Non linear Optical Properties of Semiconductor Nano structures for Slow Light and Wavelength Conversion written by David C. Nielsen and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of semiconductor nanostructures for all-optical signal processing is investigated. We first examine theoretically the utilization of quantum dots for wavelength conversion via four-wave mixing. Our results show that quantum dots with only a single bound state are more efficient than both quantum wells and quantum dots with a large number of excited states. We compare experimentally quantum dots and quantum wells with results which are consistent with our theoretical analysis. We measure the small-signal conversion of both single and multiple optical channels, and compare the results to cross-gain modulation in the same device. Our results show that four-wave mixing provides efficient, high-speed wavelength conversion in up to four, independent channels, and at speeds up to 40 GHz. Using a pulsed laser, we also examine the signal-to-noise ratio for the converted signal with our measurements showing an excellent signal to noise ratio and no patterning effect for a 25 ps pulse. To examine the theoretical limit of four-wave mixing for short pulses, we perform numerical calculations using the finite-difference beam propagation method in both a quantum dot and quantum well semiconductor optical amplifier. These calculations indicate that the quantum dot device performs better at the powers and speeds of relevance to telecommunications, but that the faster spectral hole relaxation rate of quantum wells allows for more efficient conversion of pulses less than 1 ps. We then examine how the cross-gain modulation response of the device can be increased and demonstrate that an additional pump field can create a cavity mode in the device which suppresses carrier oscillations and extends the XGM bandwidth from 1 GHz to greater than 25 GHz. Finally, we look at using a cavity mode for the purpose of slow- and fast-light and theoretically demonstrate that a fast- to slow-light transition occurs at the lasing threshold. These results compare well with previous measurements, and we present our own experimental investigations utilizing both a distributed-feedback laser and a ring laser. Utilizing a ring laser, we are able to achieve a delay bandwidth product of 10 for a 10 ps pulse in a single semiconductor device.

Book Fast Light  Slow Light and Left Handed Light

Download or read book Fast Light Slow Light and Left Handed Light written by P.W. Milonni and published by CRC Press. This book was released on 2004-11-30 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The propagation of light in dispersive media is a subject of fundamental as well as practical importance. In recent years attention has focused in particular on how refractive index can vary with frequency in such a way that the group velocities of optical pulses can be much greater or much smaller than the speed of light in vacuum, or in which the refractive index can be negative. Treating these topics at an introductory to intermediate level, Fast Light, Slow Light and Left-Handed Light focuses on the basic theory and describes the significant experimental progress made during the past decade. The book pays considerable attention to the fact that superluminal group velocities are not in conflict with special relativity and to the role of quantum effects in preventing superluminal communication and violations of Einstein causality. It also explores some of the basic physics at the opposite extreme of very slow group velocities as well as stopped and regenerated light, including the concepts of electromagnetically induced transparency and dark-state polaritons. Another very active aspect of the subject discussed concerns the possibility of designing metamaterials in which the refractive index can be negative and propagating light is left-handed in the sense that the phase and group velocities are in opposite directions. The last two chapters are an introduction to some of the basic theory and consequences of negative refractive index, with emphasis on the seminal work carried out since 2000. The possibility that "perfect" lenses can be made from negative-index metamaterials-which has been perhaps the most controversial aspect of the field-is introduced and discussed in some detail.

Book Optics of Semiconductors and Their Nanostructures

Download or read book Optics of Semiconductors and Their Nanostructures written by Heinz Kalt and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the field of semiconductor optics has been pushed to several extremes. The size of semiconductor structures has shrunk to dimensions of a few nanometers, the semiconductor-light interaction is studied on timescales as fast as a few femtoseconds, and transport properties on a length scale far below the wavelength of light have been revealed. These advances were driven by rapid improvements in both semiconductor and optical technologies and were further facilitated by progress in the theoretical description of optical excitations in semiconductors. This book, written by leading experts in the field, provides an up-to-date introduction to the optics of semiconductors and their nanostructures so as to help the reader understand these exciting new developments. It also discusses recently established applications, such as blue-light emitters, as well as the quest for future applications in areas such as spintronics, quantum information processing, and third-generation solar cells.

Book Physics of Optoelectronic Devices

Download or read book Physics of Optoelectronic Devices written by Shun Lien Chuang and published by Wiley-Interscience. This book was released on 1995-09-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizes the theory of semiconductor optoelectronic devices, demonstrating comparisons between theoretical and experimental results. Presents such important topics as semiconductor heterojunctions and band structure calculations near the band edges for bulk and quantum-well semiconductors. Details semiconductor lasers including double-heterostructure, stripe-geometry gain-guided semiconductor, distributed feedback and surface-emitting. Systematically investigates high-speed modulation of semiconductor lasers using linear and nonlinear gains. Features new subjects such as the theories on the band structures of strained semiconductors and strained quantum-well lasers. Covers key areas behind the operation of semiconductor lasers, modulators and photodetectors. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department

Book Slow Light

    Book Details:
  • Author : Jacob B. Khurgin
  • Publisher : CRC Press
  • Release : 2018-10-08
  • ISBN : 1420061526
  • Pages : 404 pages

Download or read book Slow Light written by Jacob B. Khurgin and published by CRC Press. This book was released on 2018-10-08 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the Top Selling Physics Books according to YBP Library Services The exotic effects of slow light have been widely observed in the laboratory. However, current literature fails to explore the wider field of slow light in photonic structures and optical fibers. Reflecting recent research, Slow Light: Science and Applications presents a comprehensive introduction to slow light and its potential applications, including storage, switching, DOD applications, and nonlinear optics. The book covers fundamentals of slow light in various media, including atomic media, semiconductors, fibers, and photonic structures. Leading authorities in such diverse fields as atomic vapor spectroscopy, fiber amplifiers, and integrated optics provide an interdisciplinary perspective. They uncover potential applications in both linear and nonlinear optics. While it is impossible to account for all the captivating developments that have occurred in the last few years, this book provides an exceptional survey of the current state of the slow light field.

Book Semiconductor Nanolasers

Download or read book Semiconductor Nanolasers written by Qing Gu and published by Cambridge University Press. This book was released on 2017-02-16 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique resource explains the fundamental physics of semiconductor nanolasers, and provides detailed insights into their design, fabrication, characterization, and applications. Topics covered range from the theoretical treatment of the underlying physics of nanoscale phenomena, such as temperature dependent quantum effects and active medium selection, to practical design aspects, including the multi-physics cavity design that extends beyond pure electromagnetic consideration, thermal management and performance optimization, and nanoscale device fabrication and characterization techniques. The authors also discuss technological applications of semiconductor nanolasers in areas such as photonic integrated circuits and sensing. Providing a comprehensive overview of the field, detailed design and analysis procedures, a thorough investigation of important applications, and insights into future trends, this is essential reading for graduate students, researchers, and professionals in optoelectronics, applied photonics, physics, nanotechnology, and materials science.

Book Semiconductor Laser Engineering  Reliability and Diagnostics

Download or read book Semiconductor Laser Engineering Reliability and Diagnostics written by Peter W. Epperlein and published by John Wiley & Sons. This book was released on 2013-01-25 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.

Book Semiconductor Quantum Optics

Download or read book Semiconductor Quantum Optics written by Mackillo Kira and published by Cambridge University Press. This book was released on 2011-11-17 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.

Book Solid State Properties

    Book Details:
  • Author : Mildred Dresselhaus
  • Publisher : Springer
  • Release : 2018-01-17
  • ISBN : 3662559226
  • Pages : 521 pages

Download or read book Solid State Properties written by Mildred Dresselhaus and published by Springer. This book was released on 2018-01-17 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.

Book Applied Nanophotonics

    Book Details:
  • Author : Sergey V. Gaponenko
  • Publisher : Cambridge University Press
  • Release : 2019
  • ISBN : 1107145503
  • Pages : 453 pages

Download or read book Applied Nanophotonics written by Sergey V. Gaponenko and published by Cambridge University Press. This book was released on 2019 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Book Plasmonics  Fundamentals and Applications

Download or read book Plasmonics Fundamentals and Applications written by Stefan Alexander Maier and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

Book Many Body Quantum Theory in Condensed Matter Physics

Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Book Metasurfaces  Physics and Applications

Download or read book Metasurfaces Physics and Applications written by Sergey I. Bozhevolnyi and published by MDPI. This book was released on 2018-11-16 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Metasurfaces: Physics and Applications" that was published in Applied Sciences

Book Semiconductor Physics

Download or read book Semiconductor Physics written by Karlheinz Seeger and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of "Semiconductor Physics" was published in 1973 by Springer-Verlag Wien-New York as a paperback in the Springer Study Edition. In 1977, a Russian translation by Professor Yu. K. Pozhela and coworkers at Vilnius/USSR was published by Izdatelstvo "MIR", Mo scow. Since then new ideas have been developed in the field of semi conductors such as electron hole droplets, dangling bond saturation in amorphous silicon by hydrogen, or the determination of the fine struc ture constant from surface quantization in inversion layers. New tech niques such as molecular beam epitaxy which has made the realization of the Esaki superlattice possible, deep level transient spectroscopy, and refined a. c. Hall techniques have evolved. Now that the Viennese edition is about to go out of print, Springer-Verlag, Berlin-Heidelberg-New York is giving me the opportunity to include these new subjects in a monograph to appear in the Solid-State Sciences series. Again it has been the intention to cover the field of semiconductor physics comprehensively, although some chapters such as diffusion of hot carriers and their galvanomagnetic phenomena, as well as super conducting degenerate semiconductors and the appendices, had to go for commercial reasons. The emphasis is more on physics than on device as pects.

Book The Physics of Semiconductors

Download or read book The Physics of Semiconductors written by Marius Grundmann and published by Springer Nature. This book was released on 2021-03-06 with total page 905 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.