Download or read book Biophysics of Molecular Chaperones written by Sebastian Hiller and published by Royal Society of Chemistry. This book was released on 2023-11-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular chaperones are critical to control protein quality in all living cells. Understanding chaperone function at the atomic level, and in particular its mode of interaction with client proteins, is crucial to understanding the fundamental roles chaperones play in biology. This book fills a gap in the literature by comprehensively summarizing and discussing new advanced experimental techniques for their analysis. Providing a comprehensive overview of advanced biophysical methods for the characterization of molecular mechanisms of molecular chaperones, the majority of the contributions are NMR methodology. This is the method of choice for atomic resolution studies of such systems. Additional notable biophysical approaches are considered to present all relevant current developments in exploring chaperone function and the transient and dynamic interactions with their client proteins. The book is targeted at both current practitioners of structural biology and biophysical chemistry and scientists who are interested in entering the field. It could be useful for graduate students as supplementary reading.
Download or read book Single Molecule Biophysics written by Tamiki Komatsuzaki and published by John Wiley & Sons. This book was released on 2011-11-16 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches and insights. Organized into two parts—one experimental, the other theoretical—this volume explores advances across the field of single-molecule biophysics, presenting new perspectives on the theoretical properties of atoms and molecules. Single-molecule experiments have provided fresh perspectives on questions such as how proteins fold to specific conformations from highly heterogeneous structures, how signal transductions take place on the molecular level, and how proteins behave in membranes and living cells.This volume is designed to further contribute to the rapid development of single-molecule biophysics research. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.
Download or read book Comprehensive Biophysics written by and published by Academic Press. This book was released on 2012-04-12 with total page 3533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource
Download or read book Structure And Action Of Molecular Chaperones Machines That Assist Protein Folding In The Cell written by Lila M Gierasch and published by World Scientific. This book was released on 2016-08-08 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume reviews the beautiful architectures and varying mechanical actions of the set of specialized cellular proteins called molecular chaperones, which provide essential kinetic assistance to processes of protein folding and unfolding in the cell. Ranging from multisubunit ring-shaped chaperonin and Hsp100 machines that use their central cavities to bind and compartmentalize action on proteins, to machines that use other topologies of recognition — binding cellular proteins in an archway or at the surface of a 'clamp' or at the surface of a globular assembly — the structures show us the ways and means the cell has devised to assist its major effectors, proteins, to reach and maintain their unique active forms, as well as, when required, to disrupt protein structure in order to remodel or degrade. Each type of chaperone is beautifully illustrated by X-ray and EM structure determinations at near- atomic level resolution and described by a leader in the study of the respective family. The beauty of what Mother Nature has devised to accomplish essential assisting actions for proteins in vivo is fully appreciable.
Download or read book Single Particle Tracking and Single Molecule Energy Transfer written by Christoph Bräuchle and published by John Wiley & Sons. This book was released on 2009-10-30 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.
Download or read book The Big Book on Small Heat Shock Proteins written by Robert M. Tanguay and published by Springer. This book was released on 2015-06-15 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based upon a workshop entitled “The Small HSP World” held in Québec 2-5 October 2014. Twenty-five scientists provided chapters for the book. The chapters are from the best scientists currently working in this field. These colleagues include Arrigo, Benesch, Benjamin, Buchner-Haslbeck-Weinkauf, Benndorf, Boelens, Carra, Chang, Currie, Ecroyd, Emanuelsson, Fu, Garrido, Golenhofen, Gusev, Hightower, Kampinga, Lavoie, MacRae, Quinlan, Tanguay, Vierling, Vigh, Weeks and Wu. Briefly, the book starts with the structure of small heat shock proteins, moving to their functions and finishing with their involvement in diseases. Although this is quite broad, the structural aspect will be the unifying theme of the book.
Download or read book Instrumental Analysis of Intrinsically Disordered Proteins written by Vladimir Uversky and published by John Wiley & Sons. This book was released on 2011-01-31 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instrumental techniques for analyzing intrinsically disordered proteins The recently recognized phenomenon of protein intrinsic disorder is gaining significant interest among researchers, especially as the number of proteins and protein domains that have been shown to be intrinsically disordered rapidly grows. The first reference to tackle this little-documented area, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation provides researchers with a much-needed, comprehensive summary of recent achievements in the methods for structural characterization of intrinsically disordered proteins (IDPs). Chapters discuss: Assessment of IDPs in the living cell Spectroscopic techniques for the analysis of IDPs, including NMR and EPR spectroscopies, FTIR, circular dichroism, fluorescence spectroscopy, vibrational methods, and single-molecule analysis Single-molecule techniques applied to the study of IDPs Assessment of IDP size and shape Tools for the analysis of IDP conformational stability Mass spectrometry Approaches for expression and purification of IDPs With contributions from an international selection of leading researchers, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation fills an important need in a rapidly growing field. It is required reading for biochemists, biophysicists, molecular biologists, geneticists, cell biologists, physiologists, and specialists in drug design and development, proteomics, and molecular medicine with an interest in proteins and peptides.
Download or read book Protein Folding in the Cell written by and published by Elsevier. This book was released on 2002-02-20 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Advances in Protein Chemistry provides a broad, yet deep look at the cellular components that assist protein folding in the cell. This area of research is relatively new--10 years ago these components were barely recognized, so this book is a particularly timely compilation of current information. Topics covered include a review of the structure and mechanism of the major chaperone components, prion formation in yeast, and the use of microarrays in studying stress response. Outlines preceding each chapter allow the reader to quickly access the subjects of greatest interest. The information presented in this book should appeal to biochemists, cell biologists, and structural biologists.
Download or read book Molecular Biology of the Cell written by and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book RNA Chaperones written by Tilman Heise and published by . This book was released on 2020 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a wide spectrum of methods to study RNA chaperones in vitro, at the single molecule level, and protocols useful for cell-based assays. Beginning with a section on a number of bacterial proteins for study, the volume also explores proteins from eukaryotic cells and how to delve into the complex interactions between RNA chaperones and the folding and unfolding of proteins. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Chaperones: Methods and Protocols serves as an ideal guide for scientists and students interested in RNA biology and RNA chaperones. Chapter 3 is available Open Access under a CC-BY 4.0 license via link.springer.com.
Download or read book Single Molecule Science written by Krishnarao Appasani and published by . This book was released on 2022-05-11 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive volume that brings together authoritative overviews of single molecule science techniques from a biological perspective.
Download or read book Optical Tweezers written by Arne Gennerich and published by Humana. This book was released on 2016-11-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is to provide a comprehensive overview of optical tweezers setups, both in practical and theoretical terms, to help biophysicists, biochemists, and cell biologists to build and calibrate their own instruments and to perform force measurements on mechanoenzymes both in isolation in vitro and in living cells. Chapters have been divided in three parts focusing on theory and practical design of optical tweezers, detailed protocols for performing force measurements on single DNA- and microtubule/actin-associated mechanoenzymes in isolation, and describing recent advances that have opened up quantitative force measurements in living cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Optical Tweezers: Methods and Protocols aims help to further expand the accessibility and use of optical traps by scientists of diverse disciplines.
Download or read book HSF1 and Molecular Chaperones in Biology and Cancer written by Marc Laurence Mendillo and published by Springer Nature. This book was released on 2020-04-15 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein homeostasis, or “Proteostasis”, lies at the heart of human health and disease. From the folding of single polypeptide chains into functional proteins, to the regulation of intracellular signaling pathways, to the secreted signals that coordinate cells in tissues and throughout the body, the proteostasis network operates to support cell health and physiological fitness. However, cancer cells also hijack the proteostasis network and many of these same processes to sustain the growth and spread of tumors. The chapters in this book are written by world experts in the many facets of the proteostasis network. They describe cutting-edge insights into the structure and function of the major chaperone and degradation systems in healthy cells and how these systems are co-opted in cancer cells and the cells of the tumor microenvironment. The chapters also cover therapeutic interventions such as the FDA-approved proteasome inhibitors Velcade and Krypolis as well as other therapies currently under clinical investigation to disarm the ability of the proteostasis network to support malignancy. This compendium is the first of its kind and aims to serve as a reference manual for active investigators and a primer for newcomers to the field. This book is dedicated to the memory of Susan Lindquist, a pioneer of the proteostasis field and a champion of the power of basic scientific inquiry to unlock the mechanisms of human disease. The chapter “Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Download or read book Observing Protein Dynamics and Conformational Changes by Ensemble and Single molecule Fluorescence Spectroscopy written by So Yeon Kim and published by . This book was released on 2008 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Metabolic Engineering for Bioactive Compounds written by Vipin Chandra Kalia and published by Springer. This book was released on 2017-10-07 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively discusses the latest research in the area of metabolic engineering. Metabolic engineering solutions for bioactive compounds are now being derived by means of heterologous gene expression, in a wide range of organisms. The book provides an overview of the model systems being employed for metabolic manipulation to yield bioactive molecules, such as single-cell proteins, antibody generation, metabolites, proteases, chaperones, therapeutic proteins, nanomaterials, polymeric conjugates, dendrimers and nanoassemblies, Escherichia coli, Agrobacterium, Saccharomyces cerevisiae and cell lines, etc. In addition, it shares insights into the scope of these methods in the areas of prevention, diagnosis and treatment of diseases, e.g. immunotherapy for curing various diseases like cancer, allergies, autoimmune diseases, etc.
Download or read book Combinatorial Optimization Problems Molecular Unfolding written by N.B. Singh and published by N.B. Singh. This book was released on with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the fascinating world of protein folding and unfolding with "Combinatorial Optimization Problems: Molecular Unfolding." This book is the perfect starting point for absolute beginners looking to understand the intricate processes behind molecular dynamics. It seamlessly integrates fundamental principles with essential optimization techniques, offering readers clear explanations and practical insights. Whether you're a student, researcher, or simply curious about molecular biology, this accessible guide will deepen your understanding of how proteins transition between various states. Embark on a journey into the captivating realm of molecular biology and computational methods—grab your copy today and unlock the secrets of molecular unfolding!
Download or read book The Molecular Chaperones Interaction Networks in Protein Folding and Degradation written by Walid A. Houry and published by Springer. This book was released on 2014-09-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular chaperones are a fundamental group of proteins that have been identified only relatively recently. They are key components of a protein quality machinery in the cell which insures that the folding process of any newly-synthesized polypeptide chain results in the formation of a properly folded protein and that the folded protein is maintained in an active conformation throughout its functional lifetime. Molecular chaperones have been shown to play essential roles in cell viability under both normal and stress conditions. Chaperones can also assist in the unfolding and degradation of misfolded proteins and in disaggregating preformed protein aggregates. Chaperones are also involved in other cellular functions including protein translocation across membranes, vesicle fusion events, and protein secretion. In recent years, tremendous advances have been made in our understanding of the biology, biochemistry, and biophysics of function of molecular chaperones. In addition, recent technical developments in the fields of proteomics and genomics allowed us to obtain a global view of chaperone interaction networks. Finally, there is now a growing interest in the role of molecular chaperones in diseases. This book will provide a comprehensive analysis of the structure and function of the diverse systems of molecular chaperones and their role in cell stress responses and in diseases from a global network perspective.