EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simultaneous Triangularization

Download or read book Simultaneous Triangularization written by Heydar Radjavi and published by Springer. This book was released on 2012-11-19 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.

Book Matrix Analysis

    Book Details:
  • Author : Roger A. Horn
  • Publisher : Cambridge University Press
  • Release : 1990-02-23
  • ISBN : 9780521386326
  • Pages : 580 pages

Download or read book Matrix Analysis written by Roger A. Horn and published by Cambridge University Press. This book was released on 1990-02-23 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.

Book Advanced Linear Algebra

Download or read book Advanced Linear Algebra written by Nicholas Loehr and published by CRC Press. This book was released on 2014-04-10 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra,

Book Matrix Analysis and Applied Linear Algebra

Download or read book Matrix Analysis and Applied Linear Algebra written by Carl D. Meyer and published by SIAM. This book was released on 2023-05-18 with total page 1006 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has been almost completely rewritten to create a textbook designed so instructors can determine the degree of rigor and flexible enough for a one- or two-semester course. The author achieves this by increasing the level of sophistication as the text proceeds from traditional first principles in the early chapters to theory and applications in the later ones, and by ensuring that material at any point is not dependent on subsequent developments. While theorems and proofs are highlighted, the emphasis is on applications. The author provides carefully constructed exercises ranging from easy to moderately challenging to difficult, many of which condition students for topics that follow. An accompanying book, Matrix Analysis and Applied Linear Algebra, Second Edition, Study and Solutions Guide, contains complete solutions and discussions of each exercise; and historical remarks that focus on the personalities of the individuals who created and contributed to the subject's development. This book is designed for use in either a one- or two-term linear algebra course. It can also serve as a reference to anyone who needs to use or apply linear algebra.

Book Proceedings of the Seventeenth Annual ACM SIAM Symposium on Discrete Algorithms

Download or read book Proceedings of the Seventeenth Annual ACM SIAM Symposium on Discrete Algorithms written by SIAM Activity Group on Discrete Mathematics and published by SIAM. This book was released on 2006-01-01 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symposium held in Miami, Florida, January 22–24, 2006.This symposium is jointly sponsored by the ACM Special Interest Group on Algorithms and Computation Theory and the SIAM Activity Group on Discrete Mathematics.Contents Preface; Acknowledgments; Session 1A: Confronting Hardness Using a Hybrid Approach, Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo; A New Approach to Proving Upper Bounds for MAX-2-SAT, Arist Kojevnikov and Alexander S. Kulikov, Measure and Conquer: A Simple O(20.288n) Independent Set Algorithm, Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch; A Polynomial Algorithm to Find an Independent Set of Maximum Weight in a Fork-Free Graph, Vadim V. Lozin and Martin Milanic; The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity, Wolfgang W. Bein, Mordecai J. Golin, Larry L. Larmore, and Yan Zhang; Session 1B: Local Versus Global Properties of Metric Spaces, Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala; Directed Metrics and Directed Graph Partitioning Problems, Moses Charikar, Konstantin Makarychev, and Yury Makarychev; Improved Embeddings of Graph Metrics into Random Trees, Kedar Dhamdhere, Anupam Gupta, and Harald Räcke; Small Hop-diameter Sparse Spanners for Doubling Metrics, T-H. Hubert Chan and Anupam Gupta; Metric Cotype, Manor Mendel and Assaf Naor; Session 1C: On Nash Equilibria for a Network Creation Game, Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty; Approximating Unique Games, Anupam Gupta and Kunal Talwar; Computing Sequential Equilibria for Two-Player Games, Peter Bro Miltersen and Troels Bjerre Sørensen; A Deterministic Subexponential Algorithm for Solving Parity Games, Marcin Jurdzinski, Mike Paterson, and Uri Zwick; Finding Nucleolus of Flow Game, Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun, Session 2: Invited Plenary Abstract: Predicting the “Unpredictable”, Rakesh V. Vohra, Northwestern University; Session 3A: A Near-Tight Approximation Lower Bound and Algorithm for the Kidnapped Robot Problem, Sven Koenig, Apurva Mudgal, and Craig Tovey; An Asymptotic Approximation Algorithm for 3D-Strip Packing, Klaus Jansen and Roberto Solis-Oba; Facility Location with Hierarchical Facility Costs, Zoya Svitkina and Éva Tardos; Combination Can Be Hard: Approximability of the Unique Coverage Problem, Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R. Salavatipour; Computing Steiner Minimum Trees in Hamming Metric, Ernst Althaus and Rouven Naujoks; Session 3B: Robust Shape Fitting via Peeling and Grating Coresets, Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu; Tightening Non-Simple Paths and Cycles on Surfaces, Éric Colin de Verdière and Jeff Erickson; Anisotropic Surface Meshing, Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger; Simultaneous Diagonal Flips in Plane Triangulations, Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood; Morphing Orthogonal Planar Graph Drawings, Anna Lubiw, Mark Petrick, and Michael Spriggs; Session 3C: Overhang, Mike Paterson and Uri Zwick; On the Capacity of Information Networks, Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman; Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding, Micah Adler, Erik D. Demaine, Nicholas J. A. Harvey, and Mihai Patrascu; Self-Improving Algorithms, Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu; Cake Cutting Really is Not a Piece of Cake, Jeff Edmonds and Kirk Pruhs; Session 4A: Testing Triangle-Freeness in General Graphs, Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron; Constraint Solving via Fractional Edge Covers, Martin Grohe and Dániel Marx; Testing Graph Isomorphism, Eldar Fischer and Arie Matsliah; Efficient Construction of Unit Circular-Arc Models, Min Chih Lin and Jayme L. Szwarcfiter, On The Chromatic Number of Some Geometric Hypergraphs, Shakhar Smorodinsky; Session 4B: A Robust Maximum Completion Time Measure for Scheduling, Moses Charikar and Samir Khuller; Extra Unit-Speed Machines are Almost as Powerful as Speedy Machines for Competitive Flow Time Scheduling, Ho-Leung Chan, Tak-Wah Lam, and Kin-Shing Liu; Improved Approximation Algorithms for Broadcast Scheduling, Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko; Distributed Selfish Load Balancing, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul Goldberg, Zengjian Hu, and Russell Martin; Scheduling Unit Tasks to Minimize the Number of Idle Periods: A Polynomial Time Algorithm for Offline Dynamic Power Management, Philippe Baptiste; Session 4C: Rank/Select Operations on Large Alphabets: A Tool for Text Indexing, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao; O(log log n)-Competitive Dynamic Binary Search Trees, Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator; The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree Distributed Data Structure, Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun; Design of Data Structures for Mergeable Trees, Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck; Implicit Dictionaries with O(1) Modifications per Update and Fast Search, Gianni Franceschini and J. Ian Munro; Session 5A: Sampling Binary Contingency Tables with a Greedy Start, Ivona Bezáková, Nayantara Bhatnagar, and Eric Vigoda; Asymmetric Balanced Allocation with Simple Hash Functions, Philipp Woelfel; Balanced Allocation on Graphs, Krishnaram Kenthapadi and Rina Panigrahy; Superiority and Complexity of the Spaced Seeds, Ming Li, Bin Ma, and Louxin Zhang; Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time, Michael Krivelevich and Dan Vilenchik; Session 5B: Analysis of Incomplete Data and an Intrinsic-Dimension Helly Theorem, Jie Gao, Michael Langberg, and Leonard J. Schulman; Finding Large Sticks and Potatoes in Polygons, Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S. B. Mitchell, and Arik Sityon; Randomized Incremental Construction of Three-Dimensional Convex Hulls and Planar Voronoi Diagrams, and Approximate Range Counting, Haim Kaplan and Micha Sharir; Vertical Ray Shooting and Computing Depth Orders for Fat Objects, Mark de Berg and Chris Gray; On the Number of Plane Graphs, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber, Clemens Huemer, Ferran Hurtado, and Hannes Krasser; Session 5C: All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time, Timothy M. Chan; An O(n log n) Algorithm for Maximum st-Flow in a Directed Planar Graph, Glencora Borradaile and Philip Klein; A Simple GAP-Canceling Algorithm for the Generalized Maximum Flow Problem, Mateo Restrepo and David P. Williamson; Four Point Conditions and Exponential Neighborhoods for Symmetric TSP, Vladimir Deineko, Bettina Klinz, and Gerhard J. Woeginger; Upper Degree-Constrained Partial Orientations, Harold N. Gabow; Session 7A: On the Tandem Duplication-Random Loss Model of Genome Rearrangement, Kamalika Chaudhuri, Kevin Chen, Radu Mihaescu, and Satish Rao; Reducing Tile Complexity for Self-Assembly Through Temperature Programming, Ming-Yang Kao and Robert Schweller; Cache-Oblivious String Dictionaries, Gerth Stølting Brodal and Rolf Fagerberg; Cache-Oblivious Dynamic Programming, Rezaul Alam Chowdhury and Vijaya Ramachandran; A Computational Study of External-Memory BFS Algorithms, Deepak Ajwani, Roman Dementiev, and Ulrich Meyer; Session 7B: Tight Approximation Algorithms for Maximum General Assignment Problems, Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko; Approximating the k-Multicut Problem, Daniel Golovin, Viswanath Nagarajan, and Mohit Singh; The Prize-Collecting Generalized Steiner Tree Problem Via A New Approach Of Primal-Dual Schema, Mohammad Taghi Hajiaghayi and Kamal Jain; 8/7-Approximation Algorithm for (1,2)-TSP, Piotr Berman and Marek Karpinski; Improved Lower and Upper Bounds for Universal TSP in Planar Metrics, Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton; Session 7C: Leontief Economies Encode NonZero Sum Two-Player Games, B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye; Bottleneck Links, Variable Demand, and the Tragedy of the Commons, Richard Cole, Yevgeniy Dodis, and Tim Roughgarden; The Complexity of Quantitative Concurrent Parity Games, Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger; Equilibria for Economies with Production: Constant-Returns Technologies and Production Planning Constraints, Kamal Jain and Kasturi Varadarajan; Session 8A: Approximation Algorithms for Wavelet Transform Coding of Data Streams, Sudipto Guha and Boulos Harb; Simpler Algorithm for Estimating Frequency Moments of Data Streams, Lakshimath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha; Trading Off Space for Passes in Graph Streaming Problems, Camil Demetrescu, Irene Finocchi, and Andrea Ribichini; Maintaining Significant Stream Statistics over Sliding Windows, L.K. Lee and H.F. Ting; Streaming and Sublinear Approximation of Entropy and Information Distances, Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian; Session 8B: FPTAS for Mixed-Integer Polynomial Optimization with a Fixed Number of Variables, J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel; Linear Programming and Unique Sink Orientations, Bernd Gärtner and Ingo Schurr; Generating All Vertices of a Polyhedron is Hard, Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich; A Semidefinite Programming Approach to Tensegrity Theory and Realizability of Graphs, Anthony Man-Cho So and Yinyu Ye; Ordering by Weighted Number of Wins Gives a Good Ranking for Weighted Tournaments, Don Coppersmith, Lisa Fleischer, and Atri Rudra; Session 8C: Weighted Isotonic Regression under L1 Norm, Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang; Oblivious String Embeddings and Edit Distance Approximations, Tugkan Batu, Funda Ergun, and Cenk Sahinalp0898716012\\This comprehensive book not only introduces the C and C++ programming languages but also shows how to use them in the numerical solution of partial differential equations (PDEs). It leads the reader through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The well-debugged and tested code segments implement the numerical methods efficiently and transparently. Basic and advanced numerical methods are introduced and implemented easily and efficiently in a unified object-oriented approach.

Book Advances in the Theory of System Decoupling

Download or read book Advances in the Theory of System Decoupling written by Rubens Gonçalves Salsa Junior and published by Springer Nature. This book was released on 2020-11-21 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise, clear, and consistent account of the methodology of phase synchronization, an extension of modal analysis to decouple any linear system in real space. It expounds on the novel theory of phase synchronization and presents recent advances, while also providing relevant background on classical decoupling theories that are used in structural analysis. The theory is illustrated with a broad range of examples. The theoretical development is also supplemented by applications to engineering problems. In addition, the methodology is implemented in a MATLAB algorithm which can be used to solve many of the illustrative examples in the book. This book is suited for researchers, practicing engineers, and graduate students in various fields of engineering, mathematics, and physical science.

Book Switched Linear Systems

Download or read book Switched Linear Systems written by Zhendong Sun and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switched linear systems have enjoyed a particular growth in interest since the 1990s. The large amount of data and ideas thus generated have, until now, lacked a co-ordinating framework to focus them effectively on some of the fundamental issues such as the problems of robust stabilizing switching design, feedback stabilization and optimal switching. This deficiency is resolved by this book which features: nucleus of constructive design approaches based on canonical decomposition and forming a sound basis for the systematic treatment of secondary results; theoretical exploration and logical association of several independent but pivotal concerns in control design as they pertain to switched linear systems: controllability and observability, feedback stabilization, optimization and periodic switching; a reliable foundation for further theoretical research as well as design guidance for real life engineering applications through the integration of novel ideas, fresh insights and rigorous results.

Book Time delay Systems

Download or read book Time delay Systems written by Sun Yi and published by World Scientific. This book was released on 2010 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Introduction. 1.1. Motivation. 1.2. Background. 1.3. Scope of this document. 1.4. Original contributions -- 2. Solutions of systems of DDEs via the matrix Lambert W function. 2.1. Introduction. 2.2. Free systems of DDEs. 2.3. Forced systems. 2.4. Approach using the Laplace transformation. 2.5. Concluding remarks -- 3. Stability of systems of DDEs via the Lambert W function with application to machine tool chatter. 3.1. Introduction. 3.1. The Chatter equation in the turning process. 3.3. Solving DDEs and stability. 3.4. Concluding remarks -- 4. Controllability and observability of systems of linear delay differential equations via the matrix Lambert W function. 4.1. Introduction. 4.2. Controllability. 4.3. Observability. 4.4. Illustrative example. 4.5. Conclusions and future work -- 5. Eigenvalue assignment via the Lambert W function for control of time-delay systems. 5.1. Introduction. 5.2. Eigenvalue assignment for time-delay systems. 5.3. Design of a feedback Controller. 5.4. Conclusions -- 6. Robust control and time-domain specifications for systems of delay differential equations via eigenvalue assignment. 6.1. Introduction. 6.2. Robust feedback. 6.3. Time-domain specifications. 6.4. Concluding remarks -- 7. Design of observer-based feedback control for time-delay systems with application to automotive powertrain control. 7.1. Introduction. 7.2. Problem formulation. 7.3. Design of observer-based feedback controller. 7.4. Application to diesel engine control. 7.5. Conclusions -- 8. Eigenvalues and sensitivity analysis for a model of HIV pathogenesis with an intracellular delay. 8.1. Introduction. 8.2. HIV pathogenesis dynamic model with an intracellular delay. 8.3. Rightmost eigenvalue analysis. 8.4. Sensitivity analysis. 8.5. Concluding remarks and future work

Book Digital Signal Processing for RFID

Download or read book Digital Signal Processing for RFID written by Feng Zheng and published by John Wiley & Sons. This book was released on 2016-03-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the fundamentals of RFID and the state-of-the-art research results in signal processing for RFID, including MIMO, blind source separation, anti-collision, localization, covert RFID and chipless RFID. Aimed at graduate students as well as academic and professional researchers/engineers in RFID technology, it enables readers to become conversant with the latest theory and applications of signal processing for RFID. Key Features: Provides a systematic and comprehensive insight into the application of modern signal processing techniques for RFID systems Discusses the operating principles, channel models of RFID, RFID protocols and analog/digital filter design for RFID Explores RFID-oriented modulation schemes and their performance Highlights research fields such as MIMO for RFID, blind signal processing for RFID, anti-collision of multiple RFID tags, localization with RFID, covert RFID and chipless RFID Contains tables, illustrations and design examples

Book Analysis and Stability of Nonconservative Systems

Download or read book Analysis and Stability of Nonconservative Systems written by Wei-chen Lee and published by . This book was released on 1995 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scalar  Vector  and Matrix Mathematics

Download or read book Scalar Vector and Matrix Mathematics written by Dennis S. Bernstein and published by Princeton University Press. This book was released on 2018-02-27 with total page 1594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential reference book on matrices—now fully updated and expanded, with new material on scalar and vector mathematics Since its initial publication, this book has become the essential reference for users of matrices in all branches of engineering, science, and applied mathematics. In this revised and expanded edition, Dennis Bernstein combines extensive material on scalar and vector mathematics with the latest results in matrix theory to make this the most comprehensive, current, and easy-to-use book on the subject. Each chapter describes relevant theoretical background followed by specialized results. Hundreds of identities, inequalities, and facts are stated clearly and rigorously, with cross-references, citations to the literature, and helpful comments. Beginning with preliminaries on sets, logic, relations, and functions, this unique compendium covers all the major topics in matrix theory, such as transformations and decompositions, polynomial matrices, generalized inverses, and norms. Additional topics include graphs, groups, convex functions, polynomials, and linear systems. The book also features a wealth of new material on scalar inequalities, geometry, combinatorics, series, integrals, and more. Now more comprehensive than ever, Scalar, Vector, and Matrix Mathematics includes a detailed list of symbols, a summary of notation and conventions, an extensive bibliography and author index with page references, and an exhaustive subject index. Fully updated and expanded with new material on scalar and vector mathematics Covers the latest results in matrix theory Provides a list of symbols and a summary of conventions for easy and precise use Includes an extensive bibliography with back-referencing plus an author index

Book Journal of Research of the National Bureau of Standards

Download or read book Journal of Research of the National Bureau of Standards written by United States. National Bureau of Standards and published by . This book was released on 1967 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Manual of Geodetic Triangulation

Download or read book Manual of Geodetic Triangulation written by F. R. Gossett and published by . This book was released on 1959 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Linear Algebra

Download or read book Advanced Linear Algebra written by Nicholas A. Loehr and published by CRC Press. This book was released on 2024-06-21 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The author begins with chapters introducing basic notation for vector spaces, permutations, polynomials, and other algebraic structures. The following chapters are designed to be mostly independent of each other so that readers with different interests can jump directly to the topic they want. This is an unusual organization compared to many abstract algebra textbooks, which require readers to follow the order of chapters. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint, while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. A wide array of topics is included, ranging from concrete matrix theory (basic matrix computations, determinants, normal matrices, canonical forms, matrix factorizations, and numerical algorithms) to more abstract linear algebra (modules, Hilbert spaces, dual vector spaces, bilinear forms, principal ideal domains, universal mapping properties, and multilinear algebra). The book provides a bridge from elementary computational linear algebra to more advanced, abstract aspects of linear algebra needed in many areas of pure and applied mathematics.

Book Unsolved Problems in Mathematical Systems and Control Theory

Download or read book Unsolved Problems in Mathematical Systems and Control Theory written by Vincent D. Blondel and published by Princeton University Press. This book was released on 2009-04-11 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.

Book Applied Physics  System Science and Computers III

Download or read book Applied Physics System Science and Computers III written by Klimis Ntalianis and published by Springer. This book was released on 2019-06-27 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. The first part covers applied physics topics, such as lasers and accelerators; fluid dynamics, optics and spectroscopy, among others. It also addresses astrophysics, security, and medical and biological physics. The second part focuses on advances in computers, such as those in the area of social networks, games, internet of things, deep learning models and more. The third part is especially related to systems science, covering swarm intelligence, smart cities, complexity and more. Advances in and application of computer communication, artificial intelligence, data analysis, simulation and modeling are also addressed. The book offers a collection of contributions presented at the 3nd International Conference on Applied Physics, System Science and Computers (APSAC), held in Dubrovnik, Croatia on September 26–28, 2018. Besides presenting new methods, it is also intended to promote collaborations between different communities working on related topics at the interface between physics, computer science and engineering.

Book Stability Theory of Switched Dynamical Systems

Download or read book Stability Theory of Switched Dynamical Systems written by Zhendong Sun and published by Springer Science & Business Media. This book was released on 2011-01-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are plenty of challenging and interesting problems open for investigation in the field of switched systems. Stability issues help to generate many complex nonlinear dynamic behaviors within switched systems. The authors present a thorough investigation of stability effects on three broad classes of switching mechanism: arbitrary switching where stability represents robustness to unpredictable and undesirable perturbation, constrained switching, including random (within a known stochastic distribution), dwell-time (with a known minimum duration for each subsystem) and autonomously-generated (with a pre-assigned mechanism) switching; and designed switching in which a measurable and freely-assigned switching mechanism contributes to stability by acting as a control input. For each of these classes this book propounds: detailed stability analysis and/or design, related robustness and performance issues, connections to other control problems and many motivating and illustrative examples.