EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation of Thermal Effects in Electrical Systems

Download or read book Simulation of Thermal Effects in Electrical Systems written by Christian H. Brzezinski and published by . This book was released on 1989 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal and Electro Thermal System Simulation

Download or read book Thermal and Electro Thermal System Simulation written by Márta Rencz and published by MDPI. This book was released on 2019-11-18 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: With increasing power levels and power densities in electronics systems, thermal issues are becoming more and more critical. The elevated temperatures result in changing electrical system parameters, changing the operation of devices, and sometimes even the destruction of devices. To prevent this, the thermal behavior has to be considered in the design phase. This can be done with thermal end electro-thermal design and simulation tools. This Special Issue of Energies, edited by two well-known experts of the field, Prof. Marta Rencz, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects twelve papers carefully selected for the representation of the latest results in thermal and electro-thermal system simulation. These contributions present a good survey of the latest results in one of the most topical areas in the field of electronics: The thermal and electro-thermal simulation of electronic components and systems. Several papers of this issue are extended versions of papers presented at the THERMINIC 2018 Workshop, held in Stockholm in the fall of 2018. The papers presented here deal with modeling and simulation of state-of-the-art applications that are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. Contributions covered the thermal simulation of electronic packages, electro-thermal advanced modeling in power electronics, multi-physics modeling and simulation of LEDs, and the characterization of interface materials, among other subjects.

Book Electrical thermal Modeling and Simulation for Three dimensional Integrated Systems

Download or read book Electrical thermal Modeling and Simulation for Three dimensional Integrated Systems written by Jianyong Xie and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuous miniaturization of electronic systems using the three-dimensional (3D) integration technique has brought in new challenges for the computer-aided design and modeling of 3D integrated circuits (ICs) and systems. The major challenges for the modeling and analysis of 3D integrated systems mainly stem from four aspects: (a) the interaction between the electrical and thermal domains in an integrated system, (b) the increasing modeling complexity arising from 3D systems requires the development of multiscale techniques for the modeling and analysis of DC voltage drop, thermal gradients, and electromagnetic behaviors, (c) efficient modeling of microfluidic cooling, and (d) the demand of performing fast thermal simulation with varying design parameters. Addressing these challenges for the electrical/thermal modeling and analysis of 3D systems necessitates the development of novel numerical modeling methods. This dissertation mainly focuses on developing efficient electrical and thermal numerical modeling and co-simulation methods for 3D integrated systems. The developed numerical methods can be classified into three categories. The first category aims to investigate the interaction between electrical and thermal characteristics for power delivery networks (PDNs) in steady state and the thermal effect on characteristics of through-silicon via (TSV) arrays at high frequencies. The steady-state electrical-thermal interaction for PDNs is addressed by developing a voltage drop-thermal co-simulation method while the thermal effect on TSV characteristics is studied by proposing a thermal-electrical analysis approach for TSV arrays. The second category of numerical methods focuses on developing multiscale modeling approaches for the voltage drop and thermal analysis. A multiscale modeling method based on the finite-element non-conformal domain decomposition technique has been developed for the voltage drop and thermal analysis of 3D systems. The proposed method allows the modeling of a 3D multiscale system using independent mesh grids in sub-domains. As a result, the system unknowns can be greatly reduced. In addition, to improve the simulation efficiency, the cascadic multigrid solving approach has been adopted for the voltage drop-thermal co-simulation with a large number of unknowns. The focus of the last category is to develop fast thermal simulation methods using compact models and model order reduction (MOR). To overcome the computational cost using the computational fluid dynamics simulation, a finite-volume compact thermal model has been developed for the microchannel-based fluidic cooling. This compact thermal model enables the fast thermal simulation of 3D ICs with a large number of microchannels for early-stage design. In addition, a system-level thermal modeling method using domain decomposition and model order reduction is developed for both the steady-state and transient thermal analysis. The proposed approach can efficiently support thermal modeling with varying design parameters without using parameterized MOR techniques.

Book Design of System on a Chip

    Book Details:
  • Author : Ricardo Reis
  • Publisher : Springer Science & Business Media
  • Release : 2007-05-08
  • ISBN : 140207929X
  • Pages : 258 pages

Download or read book Design of System on a Chip written by Ricardo Reis and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of System on a Chip is the first of two volumes addressing the design challenges associated with new generations of the semiconductor technology. The various chapters are the compilations of tutorials presented at workshops in Brazil in the recent years by prominent authors from all over the world. In particular the first book deals with components and circuits. Device models have to satisfy the conditions to be computationally economical in addition to be accurate and to scale over various generations of technology. In addition the book addresses issues of the parasitic behavior of deep sub-micron components, such as parameter variations and sub-threshold effects. Furthermore various authors deal with items like mixed signal components and memories. We wind up with an exposition of the technology problems to be solved if our community wants to maintain the pace of the "International Technology Roadmap for Semiconductors" (ITRS).

Book Modeling and Simulation of Electricity Systems for Transport and Energy Storage

Download or read book Modeling and Simulation of Electricity Systems for Transport and Energy Storage written by Regina Lamedica and published by MDPI. This book was released on 2021-03-05 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises five peer-reviewed articles covering original research articles on the modeling and simulation of electricity systems for transport and energy storage. The topics include: 1 - Optimal siting and sizing methodology to design an energy storage system (ESS) for railway lines; 2 - Technical–economic comparison between a 3 kV DC railway and the use of trains with on-board storage systems; 3 - How to improve electrical feeding substations, by changing transformer technology and by installing dedicated high-power-oriented storage systems; 4 - Algorithm applied to a vehicle-to-grid (V2G) technology. 5 - Thermal investigation and optimization of an air-cooled lithium-ion battery pack.

Book Thermal and Electro thermal System Simulation 2020

Download or read book Thermal and Electro thermal System Simulation 2020 written by Márta Rencz and published by MDPI. This book was released on 2021-01-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Book Multiphysics Simulation by Design for Electrical Machines  Power Electronics and Drives

Download or read book Multiphysics Simulation by Design for Electrical Machines Power Electronics and Drives written by Dr. Marius Rosu and published by John Wiley & Sons. This book was released on 2017-11-20 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Book Thermal Effects in Supercapacitors

Download or read book Thermal Effects in Supercapacitors written by Guoping Xiong and published by Springer. This book was released on 2015-06-17 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.

Book Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering

Download or read book Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering written by Zhiguang Cheng and published by Springer Nature. This book was released on 2019-12-03 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Co-authored by an international research group with a long-standing cooperation, this book focuses on engineering-oriented electromagnetic and thermal field modeling and application. It presents important contributions, including advanced and efficient finite element analysis used in the solution of electromagnetic and thermal field problems for large and multi-scale engineering applications involving application script development; magnetic measurement of both magnetic materials and components under various, even extreme conditions, based on well-established (standard and non-standard) experimental systems; and multi-level validation based on both industrial test systems and extended TEAM P21 benchmarking platform. Although these are challenging topics, they are useful for readers from both academia and industry.

Book Thermal and Electro thermal System Simulation

Download or read book Thermal and Electro thermal System Simulation written by Márta Rencz and published by . This book was released on 2019 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: With increasing power levels and power densities in electronics systems, thermal issues are becoming more and more critical. The elevated temperatures result in changing electrical system parameters, changing the operation of devices, and sometimes even the destruction of devices. To prevent this, the thermal behavior has to be considered in the design phase. This can be done with thermal end electro-thermal design and simulation tools. This Special Issue of Energies, edited by two well-known experts of the field, Prof. Marta Rencz, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects twelve papers carefully selected for the representation of the latest results in thermal and electro-thermal system simulation. These contributions present a good survey of the latest results in one of the most topical areas in the field of electronics: The thermal and electro-thermal simulation of electronic components and systems. Several papers of this issue are extended versions of papers presented at the THERMINIC 2018 Workshop, held in Stockholm in the fall of 2018. The papers presented here deal with modeling and simulation of state-of-the-art applications that are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. Contributions covered the thermal simulation of electronic packages, electro-thermal advanced modeling in power electronics, multi-physics modeling and simulation of LEDs, and the characterization of interface materials, among other subjects.

Book Compact Modeling

Download or read book Compact Modeling written by Gennady Gildenblat and published by Springer Science & Business Media. This book was released on 2010-06-22 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

Book Thermal Engineering in Power Systems

Download or read book Thermal Engineering in Power Systems written by Ryoichi Amano and published by WIT Press. This book was released on 2008 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research and development in thermal engineering for power systems are of significant importance to many scientists who are engaged in research and design work in power-related industries and laboratories. This book focuses on variety of research areas including Components of Compressor and Turbines that are used for both electric power systems and aero engines, Fuel Cells, Energy Conversion, and Energy Reuse and Recycling Systems. To be competitive in today's market, power systems need to reduce the operating costs, increase capacity factors and deal with many other tough issues. Heat Transfer and fluid flow issues are of great significance and it is likely that a state-of-the-art edited book with reference to power systems will make a contribution for design and R&D engineers and the development towards sustainable energy systems.

Book Thermal Effects in Supercapacitors

Download or read book Thermal Effects in Supercapacitors written by Guoping Xiong and published by Springer. This book was released on 2015-06-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.

Book Modelling  Simulation and Control of Thermal Energy Systems

Download or read book Modelling Simulation and Control of Thermal Energy Systems written by Kwang Y. Lee and published by MDPI. This book was released on 2020-11-03 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.

Book Simulation of Thermal Systems

Download or read book Simulation of Thermal Systems written by W.L. Dutré and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: The events leading up to the publication of this book started effectively in 1976 with the exchange of information between those modelling teams in Europe which were involved in the R&D-programme on Solar Energy of the Commission. When it became clear that the availability of experimental datafor model validation wm next to nothing, the Commission took the initiative to support in the frame of the Solar Energy R&D-programme the construction of Solar Pilot Test Facilities on eight sites in Europe. Each experimental facility consisted of two real solar heating systems with collectors, storage, controls, and msociated piping, but with the dwelling thermal distribution system replaced by a physical load simulator. One of the two systems on each site wm a reference system and wm identical for the eight participating teams. The simulator wm capable of producing a typical themalload for a house, interactive with the actual weather, and took into account the effects of the occupants. With datafrom these facilities not only were national simulation programs validated, but also the meanwhile commonly accepted modular structured European program EMGPl wm validated. EMGPl, which only could be run on a mainframe computer or under special conditions on a mini-computer,formed in tum the bmis for the development of EURSOL andEMGP3.EMGP3 is an improved userjriendly programpackagejorpersonal computers derived jrom EMGPl and includes a unique and user jriendly preprocessor.

Book Fast Simulation of Electro Thermal MEMS

Download or read book Fast Simulation of Electro Thermal MEMS written by Tamara Bechtold and published by Springer Science & Business Media. This book was released on 2006-11-01 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with a complete methodology and software environment for creating efficient dynamic compact models for electro-thermal MEMS devices. It supplies the basic knowledge and understanding for using model order reduction at the engineering level. This tutorial is written for MEMS engineers and is enriched with many case studies which equip readers with the know-how to facilitate the simulation of a specific problem.

Book EFFICIENT LARGE SCALE TRANSIEN

Download or read book EFFICIENT LARGE SCALE TRANSIEN written by Qinggao Mei and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "An Efficient Large-scale Transient Electro-thermal Field Simulator for Power Devices" by Qinggao, Mei, 梅清高, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: With ever-decreasing device size and extensive use of energy-consuming smart devices, heat generated within devices easily leads to extremely high temperature. In return, high temperature influences electrical operational characteristics of the semiconductor devices. Therefore, it is essential for designers to predict accurate temperature and voltage/current distribution and its impact on various devices. For this purpose, coupled electro-thermal (ET) simulation is indispensable. Another concern lies in the number of matrix elements for computation, possibly millions of elements, resulting in days of heavy computation. Therefore, a fast yet accurate modeling framework of overcoming the simulation difficulty is required. In this dissertation, a new transient electro-thermal simulation method for fast 3D chip-level analysis of power devices with field solver accuracy is proposed. The metallization stack and substrate are meshed and solved with 3D field solver using nonlinear temperature-dependent electrical and thermal parameters, and the active transistors are modeled with table models to avoid time-consuming TCAD simulation. Three main contributions are made to enhance physical relevance and computational performance. First, both implicit loose and tight coupling schemes are introduced to compare their computational performances under different coupling degrees. Also, their complexity analysis is presented. Second, the capacitive effects, including interconnect parasitic capacitance and gate capacitance of power devices with nonlinear dependence on bias and temperature, are explicitly accounted for. The inclusion of capacitive effects allows accurate modeling of devices with large numbers of transistor fingers and high frequency application. Third, a specialized nonlinear exponential integrator (EI) method is developed to address the considerably different time scales between electrical and thermal sectors. The EI-based transient solver allows the electrical system to step with much larger time step size than in conventional methods, thus the time step size gap between the electrical and the thermal simulation is largely reduced. Its benefits of scalability, adaptivity and accuracy are also demonstrated in the dissertation. Subjects: Power semiconductors