EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation of the Fermilab Booster Using Synergia

Download or read book Simulation of the Fermilab Booster Using Synergia written by Panagiotis Spentzouris and published by . This book was released on 2005 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: High precision modeling of space-charge effects is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher-order optics implementation. We describe the Synergia framework, developed under the auspices of the DOE SciDAC program, and present Synergia simulations of the Fermilab Booster accelerator and comparisons with experiment. Our studies include investigation of coherent and incoherent tune shifts and halo formation.

Book Space Charge Experiments and Simulation in the Fermilab Booster

Download or read book Space Charge Experiments and Simulation in the Fermilab Booster written by P. Spentzouris and published by . This book was released on 2005 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have studied space charge effects in the Fermilab Booster. Our studies include investigation of coherent and incoherent tune shifts and halo formation. We compare experimental results with simulations using the 3-D space charge package Synergia.

Book Measurement and Simulations of Intensity dependent Effects in the Fermilab Booster Synchrotron

Download or read book Measurement and Simulations of Intensity dependent Effects in the Fermilab Booster Synchrotron written by and published by . This book was released on 2010 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fermilab Booster is a nearly 40-year-old proton synchrotron, designed to accelerate injected protons from a kinetic energy of 400 MeV to 8 GeV for extraction into the Main Injector and ultimately the Tevatron. Currently the Booster is operated with a typical intensity of 4.5 x 1012 particles per beam, roughly twice the value of its design, because of the requirement for high particle flux in various experiments. Its relatively low injection energy provides certain challenges in maintaining beam quality and stability under these increasing intensity demands. An understanding of the effects limiting this intensity could provide enhanced beam stability and reduced downtime due to particle losses and subsequent damage to the accelerator elements. Design of future accelerators can also benefit from a better understanding of intensity effects limiting injection dynamics. Chapter 1 provides a summary of accelerator research during the 20th century leading to the development of the modern synchrotron. Chapter 2 puts forth a working knowledge of the terminology and basic theory used in accelerator physics, and provides a brief description of the Fermilab Booster synchrotron. Synergia, a 3d space-charge modeling framework, is presented, along with some simulation benchmarks relevant to topics herein. Emittance, a commonly used quantity characterizing beam size and quality in a particular plane, is discussed in Chapter 3. Space-charge fields tend to couple the motion among the planes, leading to emittance exchange, and necessitating a simultaneous measurement to obtain a complete emittance description at higher intensities. A measurement is described and results are given. RMS beam emittances are shown to be in keeping with known Booster values at nominal intensities and emittance exchange is observed and accounted for. Unmeasurable correlation terms between the planes are quantified using Synergia, and shown to be at most an 8% effect. Results of studies on the coherent and incoherent shifts of transverse (betatron) frequencies with beam intensity at injection energies are presented. In Chapter 4 the coherent frequency shifts are shown to be due to dipole- and quadrupole-wakefield effects. The asymmetry of the Booster beam chamber through the magnets, as well as the presence of magnet laminations, are responsible for the magnitudes and for the opposing signs of the horizontal and vertical tune shifts caused by these wakefields. Chapter 5 details the procedures for obtaining a linear coherent-tune-shift intensity dependence, yielding -0.009/1012 in the vertical plane and +0.001/1012 in the horizontal plane. Data demonstrate a requirement of several hundred turns to accumulate to its maximal value. Two independent studies are compared, corroborating these results. In Chapter 6, a measure of the incoherent tune shift with intensity puts an upper limit on the magnitude of the direct space-charge effect in the Fermilab Booster. A prediction is made for the representative incoherent particle tune shift using a realistic Gaussian distribution, allowing for growth of the beam envelope with intensity, and found to be 0.004/1012. The tune-spread dependence obtained by quantification of the resonant stopband width from beam-extinction measurements was measured at 0.005/1012, similar to the predicted value. These will be shown to be one order of magnitude smaller than the space-charge term from the Laslett tune shift for a fixed-size, uniform beam.

Book Measurement and Simulations of Intensity dependent Effects in the Fermilab Booster Synchrotron

Download or read book Measurement and Simulations of Intensity dependent Effects in the Fermilab Booster Synchrotron written by Daniel McCarron and published by . This book was released on 2010 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fermilab Booster is a nearly 40-year-old proton synchrotron, designed to accelerate injected protons from a kinetic energy of 400 MeV to 8 GeV for extraction into the Main Injector and ultimately the Tevatron. Currently the Booster is operated with a typical intensity of 4.5 x 10¹² particles per beam, roughly twice the value of its design, because of the requirement for high particle flux in various experiments. Its relatively low injection energy provides certain challenges in maintaining beam quality and stability under these increasing intensity demands. An understanding of the effects limiting this intensity could provide enhanced beam stability and reduced downtime due to particle losses and subsequent damage to the accelerator elements. Design of future accelerators can also benefit from a better understanding of intensity effects limiting injection dynamics. Chapter 1 provides a summary of accelerator research during the 20th century leading to the development of the modern synchrotron. Chapter 2 puts forth a working knowledge of the terminology and basic theory used in accelerator physics, and provides a brief description of the Fermilab Booster synchrotron. Synergia, a 3d space-charge modeling framework, is presented, along with some simulation benchmarks relevant to topics herein. Emittance, a commonly used quantity characterizing beam size and quality in a particular plane, is discussed in Chapter 3. Space-charge fields tend to couple the motion among the planes, leading to emittance exchange, and necessitating a simultaneous measurement to obtain a complete emittance description at higher intensities. A measurement is described and results are given. RMS beam emittances are shown to be in keeping with known Booster values at nominal intensities and emittance exchange is observed and accounted for. Unmeasurable correlation terms between the planes are quantified using Synergia, and shown to be at most an 8% effect. Results of studies on the coherent and incoherent shifts of transverse (betatron) frequencies with beam intensity at injection energies are presented. In Chapter 4 the coherent frequency shifts are shown to be due to dipole- and quadrupole-wakefield effects. The asymmetry of the Booster beam chamber through the magnets, as well as the presence of magnet laminations, are responsible for the magnitudes and for the opposing signs of the horizontal and vertical tune shifts caused by these wakefields. Chapter 5 details the procedures for obtaining a linear coherent-tune-shift intensity dependence, yielding -0.009/10¹² in the vertical plane and +0.001/10¹² in the horizontal plane. Data demonstrate a requirement of several hundred turns to accumulate to its maximal value. Two independent studies are compared, corroborating these results. In Chapter 6, a measure of the incoherent tune shift with intensity puts an upper limit on the magnitude of the direct space-charge effect in the Fermilab Booster. A prediction is made for the representative incoherent particle tune shift using a realistic Gaussian distribution, allowing for growth of the beam envelope with intensity, and found to be 0.004/10¹². The tune-spread dependence obtained by quantification of the resonant stopband width from beam-extinction measurements was measured at 0.005/10¹², similar to the predicted value. These will be shown to be one order of magnitude smaller than the space-charge term from the Laslett tune shift for a fixed-size, uniform beam.

Book The Effect of Space charge and Wake Fields in the Fermilab Booster

Download or read book The Effect of Space charge and Wake Fields in the Fermilab Booster written by and published by . This book was released on 2011 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: We calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. We critically examine the approximations used in the literature for the coupling impedance in laminated chambers and find that most of them are not justified because the wall surface impedance is large. A comparison between the flat and the circular geometry impedance is presented. We use the wake fields calculated for the Fermilab Booster laminated magnets in realistic beam simulations using the Synergia code. We find good agreement between our calculation of the coherent tune shift at injection energy and the experimental measurements. In this paper we calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. First the coupling impedance is derived as a function of the wall surface impedance. Then the surface impedance is calculated by solving Maxwell's equations inside the lamination and the crack regions. We find that the commonly used resistive-wall approximations, good for metallic pipes with small surface impedance, are not valid in the laminated structures where the surface impedance is large. Realistic Synergia simulations of the Booster machine with wake fields predict transverse coherent tune shifts in good agreement with the experiment.

Book Overview of the Synergia 3 D Multi particle Dynamics Modeling Framework

Download or read book Overview of the Synergia 3 D Multi particle Dynamics Modeling Framework written by P. Spentzouris and published by . This book was released on 2005 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: High precision modeling of space-charge effects is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher-order optics implementation. We describe the Synergia framework and model benchmarks we obtained by comparing to semi-analytic results and other codes. We also present Synergia simulations of the Fermilab Booster accelerator and comparisons with experiment.

Book Simulation of the Capture Process in the Fermilab Booster

Download or read book Simulation of the Capture Process in the Fermilab Booster written by and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new RF voltage program for capture which ameliorates transverse space-charge effects is described and simulated. 7 refs., 4 figs.

Book Synergia

    Book Details:
  • Author :
  • Publisher :
  • Release : 2004
  • ISBN :
  • Pages : 21 pages

Download or read book Synergia written by and published by . This book was released on 2004 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab booster accelerator.

Book Simulation of a Programmed Frequency Shift Near Extraction from the Fermilab Booster

Download or read book Simulation of a Programmed Frequency Shift Near Extraction from the Fermilab Booster written by and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The longitudinal phase space program ESME has been used to simulate the effects of a linear shift in RF frequency away from that appropriate for the accelerator guide field. This shift takes place in the new Booster low level RF and is used to position the particle bunches in Main Ring buckets in a reproducible fashion. Shifts in frequency are found to generate synchrotron oscillations; however, the simulations show that these can be reduced to acceptable levels by introduction of jumps in RF phase preceding the programmed frequency changes. Lowering the RF voltage near extraction from the Booster, a desirable operational feature, has also been investigated.

Book Simulation of Space Charge Effects and Transition Crossing in the Fermilab Booster

Download or read book Simulation of Space Charge Effects and Transition Crossing in the Fermilab Booster written by and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem.

Book Simulations of Space Charge in the Fermilab Main Injector

Download or read book Simulations of Space Charge in the Fermilab Main Injector written by and published by . This book was released on 2011 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 1011 to 3.0 x 1011. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

Book Fermilab Booster Transition Crossing Simulations and Beam Studies

Download or read book Fermilab Booster Transition Crossing Simulations and Beam Studies written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fermilab Booster accelerates beam from 400 MeV to 8 GeV at 15 Hz. In the PIP (Proton Improvement Plan) era, it is required that Booster deliver 4.2 x $10^$ protons per pulse to extraction. One of the obstacles for providing quality beam to the users is the longitudinal quadrupole oscillation that the beam suffers from right after transition. Although this oscillation is well taken care of with quadrupole dampers, it is important to understand the source of these oscillations in light of the PIP II requirements that require 6.5 x $10^$ protons per pulse at extraction. This paper explores the results from machine studies, computer simulations and solutions to prevent the quadrupole oscillations after transition.

Book Emittance Measurements and Modeling of the Fermilab Booster

Download or read book Emittance Measurements and Modeling of the Fermilab Booster written by S. Y. Lee and published by . This book was released on 2005 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fermilab Booster Modeling and Space Charge Study

Download or read book Fermilab Booster Modeling and Space Charge Study written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fermilab Booster is a bottleneck limiting the proton beam intensity in the accelerator complex. A study group has been formed in order to have a better understanding of this old machine and seek possible improvements. The work includes lattice modeling, numerical simulations, bench measurements and beam studies. Based on newly obtained information, it has been found that the machine acceptance is severely compromised by the orbit bump and dogleg magnets. This, accompanied by emittance dilution from space charge at injection, is a major cause of the large beam loss at the early stage of the cycle. Measures to tackle this problem are being pursued.

Book High Intensity and High Brightness Hadron Beams

Download or read book High Intensity and High Brightness Hadron Beams written by I. Hofmann and published by American Institute of Physics. This book was released on 2005-07-18 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cd-ROM contains: electronic version of AIP Conference Proceedings found in text.

Book Electron Cloud in the Fermilab Booster

Download or read book Electron Cloud in the Fermilab Booster written by and published by . This book was released on 2007 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulations of the Fermilab Booster reveal a substantial electron-cloud buildup both inside the unshielded combined-function magnets and the beam pipes joining the magnets, when the second-emission yield (SEY) is larger than (almost equal to)1.6. The implication of the electron-cloud effects on space charge and collective instabilities of the beam is discussed.

Book Emittance Dilution and Halo Creation During the First Milliseconds After Injection at the Fermilab Booster

Download or read book Emittance Dilution and Halo Creation During the First Milliseconds After Injection at the Fermilab Booster written by J. Amundson and published by . This book was released on 2005 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past year, the Fermilab Booster has been pushed to record intensities in order to satisfy the needs of the Tevatron collider and neutrino programs. This high intensity makes the study of space-charge effects and halo formation highly relevant to optimizing Booster performance. We present measurements of beam width evolution, halo formation, and coherent tune shifts, emphasizing the experimental techniques used and the calibration of the measuring devices. We also use simulations utilizing the 3D space-charge code Synergia to study the physical origins of these effects.