EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation of Atmospheric Boundary Layer Turbulence with Cross spectrum and Large scale Eddy Structure

Download or read book Simulation of Atmospheric Boundary Layer Turbulence with Cross spectrum and Large scale Eddy Structure written by Ehssanollah F. Arman and published by . This book was released on 1986 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Eddy Simulations of Turbulence

Download or read book Large Eddy Simulations of Turbulence written by M. Lesieur and published by Cambridge University Press. This book was released on 2005-08-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Book OpenFOAM Large eddy Simulations of Atmospheric Boundary Layer Turbulence for Wind Engineering Applications

Download or read book OpenFOAM Large eddy Simulations of Atmospheric Boundary Layer Turbulence for Wind Engineering Applications written by Liang Shi and published by . This book was released on with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical properties such as the spectral density and spatial coherence of boundary layer turbulence affect bluff body aerodynamics and structural responses. In this report, the open-source toolbox OpenFOAM is employed to perform LES simulations of boundary layer flows with rough ground and to obtain turbulence statistics. The one-equation-eddy SGS model is used for the subgrid-scale motions while the wall shear model is applied at the ground. The mean velocity profiles follow the logarithmic law except the near-ground region owing to the limited accuracy of the SGS model. The Reynolds stresses, the third-order moments and the energy budgets are reasonably well represented. The power spectra agree with the modified Kaimal expressions at low frequencies. Additional research is planned on the simulation of higher frequency turbulence spectra. The spatial coherence functions are exponential and consistent with the expressions commonly used in wind engineering applications.

Book Analyses of Turbulence in the Neutrally and Stably Stratified Planetary Boundary Layer

Download or read book Analyses of Turbulence in the Neutrally and Stably Stratified Planetary Boundary Layer written by Cedrick Ansorge and published by Springer. This book was released on 2016-09-15 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature— weakly, intermediately and strongly stratified—are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology.

Book Large eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence

Download or read book Large eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence written by Sukanta Basu and published by . This book was released on 2004 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Contributions to the Simulation of Turbulence

Download or read book Contributions to the Simulation of Turbulence written by John Altnow Dutton and published by . This book was released on 1976 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large eddy Simulation of the Development of Stably stratified Atmospheric Boundary Layers Over Cool Flat Surfaces

Download or read book Large eddy Simulation of the Development of Stably stratified Atmospheric Boundary Layers Over Cool Flat Surfaces written by and published by . This book was released on 1994 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stable boundary layer (SBL) has received less attention in atmospheric field studies, laboratory experiments, and numerical modeling than other states of the atmospheric boundary layer. The low intensity and potential intermittency of turbulence in the SBL make it difficult to measure and characterize its structure. Large-eddy simulation (LES) offers an approach for simulating the SBL and, in particular, its evolution from the onset of surface cooling. Traditional approaches that involve Reynolds-averaged models of turbulence are not able to simulate the stochastic nature of the intermittent turbulence that is associated with the SBL. LES shows promise in this area through its explicit calculation of turbulent eddies at resolved scales. In the LES approach, the Navier-Stokes equations governing the flow are averaged (filtered) over some small interval, such as one or more cells of the computational grid. The grid size is small enough so that large eddies, which carry most of the turbulent energy, are explicitly calculated. The turbulence associated with the subgrid-scale (SGS) eddies is modeled. In the Reynolds-averaging approach, on the other hand, the turbulence model must account for all scales of turbulence. Thus the advantage of LES is that the choice of turbulence parameterization for the SGS turbulence is not nearly as critical as in the Reynolds-averaged approach. Complications faced by turbulence models, such as anisotropy and pressure-strain correlations, are associated mainly with large, energy-containing eddies. LES offers the potential for more realistic simulations since the more complicated features of turbulence are calculated explicitly. The ability of LES to simulate the stochastic behavior of turbulence makes this approach suitable for developing and testing stochastic models of turbulent diffusion. One of the goals of the present work is to provide stochastic datasets to be used in such studies.

Book Large Eddy Simulation of Turbulent Wall Pressure Fluctuations

Download or read book Large Eddy Simulation of Turbulent Wall Pressure Fluctuations written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-05 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density. Singer, Bart A. Langley Research Center NAS1-20059; RTOP 505-59-50-02...

Book Large eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer

Download or read book Large eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer written by Bowen Zhou and published by . This book was released on 2012 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: A stable atmospheric boundary layer (ABL) develops over land at night due to radiative surface cooling. The state of turbulence in the stable boundary layer (SBL) is determined by the competing forcings of shear production and buoyancy destruction. When both forcings are comparable in strength, the SBL falls into an intermittently turbulent state, where intense turbulent bursts emerge sporadically from an overall quiescent background. This usually occurs on clear nights with weak winds when the SBL is strongly stable. Although turbulent bursts are generally short-lived (half an hour or less), their impact on the SBL is significant since they are responsible for most of the turbulent mixing. The nighttime SBL can be modeled with large-eddy simulation (LES). LES is a turbulence-resolving numerical approach which separates the large-scale energy-containing eddies from the smaller ones based on application of a spatial filter. While the large eddies are explicitly resolved, the small ones are represented by a subfilter-scale (SFS) stress model. Simulation of the SBL is more challenging than the daytime convective boundary layer (CBL) because nighttime turbulent motions are limited by buoyancy stratification, thus requiring fine grid resolution at the cost of immense computational resources. The intermittently turbulent SBL adds additional levels of complexity, requiring the model to not only sustain resolved turbulence during quiescent periods, but also to transition into a turbulent state under appropriate conditions. As a result, LES of the strongly stable SBL potentially requires even finer grid resolution, and has seldom been attempted. This dissertation takes a different approach. By improving the SFS representation of turbulence with a more sophisticated model, intermittently turbulent SBL is simulated, to our knowledge, for the first time in the LES literature. The turbulence closure is the dynamic reconstruction model (DRM), applied under an explicit filtering and reconstruction LES framework. The DRM is a mixed model that consists of subgrid scale (SGS) and resolved subfilter scale (RSFS) components. The RSFS portion is represented by a scale-similarity model that allows for backscatter of energy from the SFS to the mean flow. Compared to conventional closures, the DRM is able to sustain resolved turbulence under moderate stability at coarser resolution (thus saving computational resources). The DRM performs equally well at fine resolution. Under strong stability, the DRM simulates an intermittently turbulent SBL, whereas conventional closures predict false laminar flows. The improved simulation methodology of the SBL has many potential applications in the area of wind energy, numerical weather prediction, pollution modeling and so on. The SBL is first simulated over idealized flat terrain with prescribed forcings and periodic lateral boundaries. A wide range of stability regimes, from weakly to strongly stable conditions, is tested to evaluate model performance. Under strongly stable conditions, intermittency due to mean shear and turbulence interactions is simulated and analyzed. Furthermore, results of the strongly stable SBL are used to improve wind farm siting and nighttime operations. Moving away from the idealized setting, the SBL is simulated over relatively flat terrain at a Kansas site over the Great Plains, where the Cooperative Atmospheric-Surface Exchange Study - 1999 (CASES-99) took place. The LES obtains realistic initial and lateral boundary conditions from a meso-scale model reanalysis through a grid nesting procedure. Shear-instability induced intermittency observed on the night of Oct 5th during CASES-99 is reproduced to good temporal and magnitude agreement. The LES locates the origin of the shear-instability waves in a shallow upwind valley, and uncovers the intermittency mechanism to be wave breaking over a standing wave (formed over a stagnant cold-air bubble) across the valley. Finally, flow over the highly complex terrain of the Owens Valley in California is modeled with a similar nesting procedure. The LES results are validated with observation data from the 2006 Terrain-Induced Rotor Experiment (T-REX). The nested LES reproduces a transient nighttime warming event observed on the valley floor on April 17 during T-REX. The intermittency mechanism is shown to be through slope-valley flow transitions. In addition, a cold-air intrusion from the eastern valley sidewall is simulated. This generates an easterly cross-valley flow, and the associated top-down mixing through breaking Kelvin-Helmholtz billows is analyzed. Finally, the nesting methodology tested and optimized in the CASES-99 and T-REX studies is transferrable to general ABL applications. For example, a nested LES is performed to model daytime methane plume dispersion over a landfill and good results are obtained.

Book Large Eddy Simulation of Turbulent Wall Pressure Fluctuations

Download or read book Large Eddy Simulation of Turbulent Wall Pressure Fluctuations written by and published by . This book was released on 1996 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Subgrid scale Turbulence Modeling for Improved Large eddy Simulation of the Atmospheric Boundary Layer

Download or read book Subgrid scale Turbulence Modeling for Improved Large eddy Simulation of the Atmospheric Boundary Layer written by Rica Mae Enriquez and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-eddy simulation (LES), as the name suggests, resolves the large eddies in the flow while modeling the effects of smaller motions (turbulence) on those larger eddies. Powerful computers make LES increasingly practical for analyzing a variety of atmospheric behavior in more detail, creating a need for more realistic turbulence models. Advances in describing atmospheric turbulence can impact many disciplines, e.g., weather and climate prediction, wind energy production, ocean dynamics, and, indeed, even computational fluid dynamics itself. Although the turbulence model can significantly affect the accuracy of the LES, simple turbulence models, which are known to be less accurate, are widely used. As an alternative, the Generalized Linear Algebraic Subgrid-Scale (GLASS) model, that actively couples momentum and heat transport, was developed. This model is more complete than conventional LES turbulence models because it accounts for additional transport processes. GLASS includes production, dissipation, pressure redistribution, and buoyancy terms. With the inclusion of an actively coupled turbulent heat flux model, GLASS is applicable to a range of atmospheric stability conditions for the unsaturated atmosphere. LES at various resolutions in a neutrally stratified boundary layer flow indicated that the GLASS model is a more physically complete subgrid-scale turbulence model that provides near-wall anisotropies and yields proper velocity profiles in the logarithmic layer. LES of the moderately convective boundary layer demonstrated that GLASS predicted the evolution of resolved quantities at least as well as the LESs with simple models, while including additional physics. Additional simulations of the stable boundary layer and the transitioning boundary layer highlight that GLASS can be applied to various stability conditions without the need of tuning model coefficients.

Book New Tools in Turbulence Modelling

Download or read book New Tools in Turbulence Modelling written by Olivier Metais and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical large-eddy simulation techniques are booming at present and will have a decisive impact on industrial modeling and flow control. The book represents the general framework in physical and spectral space. It also gives the recent subgrid-scale models. Topics treated include compressible turbulence research, turbulent combustion, acoustic predictions, vortex dynamics in non-trivial geometries, flows in nuclear reactors and problems in atmospheric and geophysical sciences. The book addresses numerical analysts, physicists, and engineers.

Book Modeling Complex Turbulent Flows

Download or read book Modeling Complex Turbulent Flows written by Manuel D. Salas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.

Book Large Eddy Simulation in Hydraulics

Download or read book Large Eddy Simulation in Hydraulics written by Wolfgang Rodi and published by CRC Press. This book was released on 2013-06-27 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the Large-Eddy-Simulation (LES) method, geared primarily toward hydraulic and environmental engineers, the book covers special features of flows in water bodies and summarizes the experience gained with LES for calculating such flows. It can also be a valuable entry to the subject of LES for researchers and students in all fields of fluids engineering, and the applications part will be useful to researchers interested in the physics of flows governed by the dynamics of coherent structures.

Book A Study of Turbulence in an Evolving Stable Atmospheric Boundary Layer Using Large eddy Simulation

Download or read book A Study of Turbulence in an Evolving Stable Atmospheric Boundary Layer Using Large eddy Simulation written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A study is made of the effects of stable stratification on the fine-scale features of the flow in an evolving stable boundary layer (SBL). Large-eddy simulation (LES) techniques are used so that spatially and temporally varying and intermittent features of the turbulence can be resolved; traditional Reynolds-averaging approaches are not well suited to this. The LES model employs a subgrid turbulence model that allows upscale energy transfer (backscatter) and incorporates the effects of buoyancy. The afternoon, evening transition, and nighttime periods are simulated. Highly anisotropic turbulence is found in the developed SBL, with occasional periods of enhanced turbulence. Energy backscatter occurs in a fashion similar to that found in DNS, and is an important capability in LES of the SBL. Coherent structures are dominant in the SBL, as the damping of turbulent energy occurs more at the smaller, less organized scales.