EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulating Collisions for Hydrokinetic Turbines

Download or read book Simulating Collisions for Hydrokinetic Turbines written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulating Collisions for Hydrokinetic Turbines  FY2010 Annual Progress Report

Download or read book Simulating Collisions for Hydrokinetic Turbines FY2010 Annual Progress Report written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories, funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

Book Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine

Download or read book Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine written by Taylor Jessica Hall and published by . This book was released on 2012 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the search for clean, renewable energy, the kinetic energy of water currents in oceans, rivers, and estuaries is being studied as a predictable and environmentally benign source. We investigate the flow past a cross flow hydrokinetic turbine (CFHT) in which a helical blade turns around a shaft perpendicular to the free stream under the hydrodynamic forces exerted by the flow. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages in the context of hydrokinetic energy harvesting, such as independence from current direction, including reversibility, stacking, and self-starting without complex pitch mechanisms. This thesis develops a numerical simulation methodology that applies the Reynolds Average Navier Stokes equations and the three-dimensional sliding mesh technique to model CFHTs. The methodology is validated against small scale experiments, available within NNMREC at the University of Washington and is used to investigate the efficiency of the energy capture and the hydrodynamic forces acting on the blades. First, we study the stationary turbine and conclude that the developed methodology accurately models the starting torque of a turbine initially in static conditions; some limitations are found, however, in predicting separated flow. The dynamic performance of the rotating turbine is predicted with reasonable accuracy using the sliding mesh technique. Excellent qualitative agreement with experimental trends is found in the results, and the actual predicted values from the simulations show good agreement with measurements. Though limitations in accurately modeling dynamic stall for the rotating turbine are confirmed, the good qualitative agreement suggests this methodology can be used to support turbine design and performance over a wide range of parameters, minimizing the number of prototypes to build and experiments to run in the pursuit of an optimized turbine. This methodology can also provide a cost-effective way of evaluating detailed full scale effects, such as mooring lines or local bottom bathymetry features, on both turbine performance and environmental assessment.

Book Vertical Axis Hydrokinetic Turbines  Numerical and Experimental Analyses

Download or read book Vertical Axis Hydrokinetic Turbines Numerical and Experimental Analyses written by Mabrouk Mosbahi and published by Bentham Science Publishers. This book was released on 2021-12-14 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity. The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented. This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects. Key features: - 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines - Simple structured layout for easy reading (methodology, models and results) - Bibliographic study to introduce the reader to the subject - A wide range of parameters included in experiments - A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Book Modeling and Simulation of Hydrokinetic Composite Turbine System

Download or read book Modeling and Simulation of Hydrokinetic Composite Turbine System written by Haifeng Li and published by . This book was released on 2014 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The utilization of kinetic energy from the river is promising as an attractive alternative to other available renewable energy resources. Hydrokinetic turbine systems are advantageous over traditional dam based hydropower systems due to "zero-head" and mobility. The objective of this study is to design and analyze hydrokinetic composite turbine system in operation. Fatigue study and structural optimization of composite turbine blades were conducted. System level performance of the composite hydrokinetic turbine was evaluated. A fully-coupled blade element momentum-finite element method algorithm has been developed to compute the stress response of the turbine blade subjected to hydrodynamic and buoyancy loadings during operation. Loadings on the blade were validated with commercial software simulation results. Reliability-based fatigue life of the designed composite blade was investigated. A particle swarm based structural optimization model was developed to optimize the weight and structural performance of laminated composite hydrokinetic turbine blades. The online iterative optimization process couples the three-dimensional comprehensive finite element model of the blade with real-time particle swarm optimization (PSO). The composite blade after optimization possesses much less weight and better load-carrying capability. Finally, the model developed has been extended to design and evaluate the performance of a three-blade horizontal axis hydrokinetic composite turbine system. Flow behavior around the blade and power/power efficiency of the system was characterized by simulation. Laboratory water tunnel testing was performed and simulation results were validated by experimental findings. The work performed provides a valuable procedure for the design and analysis of hydrokinetic composite turbine systems"--Abstract, page iv.

Book Underwater Acoustic Modeling and Simulation

Download or read book Underwater Acoustic Modeling and Simulation written by Paul C. Etter and published by CRC Press. This book was released on 2018-04-06 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This newest edition adds new material to all chapters, especially in mathematical propagation models and special applications and inverse techniques. It has updated environmental-acoustic data in companion tables and core summary tables with the latest underwater acoustic propagation, noise, reverberation, and sonar performance models. Additionally

Book A Numerical Investigation Into the Effects of Positioning and Rotation on the Performance of Two Vertical axis Hydrokinetic Turbines

Download or read book A Numerical Investigation Into the Effects of Positioning and Rotation on the Performance of Two Vertical axis Hydrokinetic Turbines written by Jody Soviak and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation allows investigation into the influence of separation distance and rotation on the performance of two vertical-axis hydrokinetic turbines. Compu- tational fluid dynamics is applied to calulate the lift and drag coefficients acting upon interacting NACA 0021 turbine blades for a Reynolds number of Red = 10, 000. To understand the effect of separation distance, large-eddy simulation of the flow around side-by-side and staggered cylinders, ReD = 3,000, and airfoils, Rec = 3,000, are also performed. Based upon the simulations, a drag reduction of 11.3% and 19.8% is determined for the downstream cylinder and airfoil, respectively. A reduction in Reynolds stresses is also observed for the staggered configuration compared to the side-by-side configuration. Due to computational resources of large-eddy simulation, the Reynolds averaged Navier-Stokes method is also applied to investigate the influence of separation distance and rotation on two vertical axis hydrokinetic turbines. The numerical simulations show that a drag reduction of 15.5% occurs when the non-dimensional spanwise and streamwise separation distances, based on turbine diameter, reach 1 and 2, respectively.

Book Computer Simulation Studies of High Energy Collision Cascades

Download or read book Computer Simulation Studies of High Energy Collision Cascades written by and published by . This book was released on 1991 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modified binary collision approximation allowing the proper order of the collisions in time was used to study cascades in Cu and Au at primary kinetic energies up to 100 keV. Nonlinearities were approximated by letting already-stopped cascade atoms become targets in later collisions, using an improved method of locating potential targets to extend the calculations to energies much higher than heretofore. Beside the effect of the approximate nonlinearity, the effect of thermal disorder in the targets was examined. Target redisplacements reduce the damage in Cu by 3% at most, but in Au they reduce it by amounts up to 20% at 100 keV. Thermal disorder is also important: by disrupting crystal effects, the damage is reduced significantly. 11 refs., 4 figs.

Book Vertical Axis Hydrokinetic Turbines

Download or read book Vertical Axis Hydrokinetic Turbines written by Mabrouk Mosbahi; Ahmed and published by . This book was released on 2021-12-14 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity. The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented. This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects. Key features: - 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines - Simple structured layout for easy reading (methodology, models and results) - Bibliographic study to introduce the reader to the subject - A wide range of parameters included in experiments - A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Book Underwater Acoustic Modeling and Simulation  Fifth Edition

Download or read book Underwater Acoustic Modeling and Simulation Fifth Edition written by Paul C. Etter and published by CRC Press. This book was released on 2018-03-15 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: This newest edition adds new material to all chapters, especially in mathematical propagation models and special applications and inverse techniques. It has updated environmental-acoustic data in companion tables and core summary tables with the latest underwater acoustic propagation, noise, reverberation, and sonar performance models. Additionally, the text discusses new applications including underwater acoustic networks and channel models, marine-hydrokinetic energy devices, and simulation of anthropogenic sound sources. It further includes instructive case studies to demonstrate applications in sonar simulation.

Book Advances in Clean Energy Systems and Technologies

Download or read book Advances in Clean Energy Systems and Technologies written by Lin Chen and published by Springer Nature. This book was released on with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the International Conference on Sustainable Environment  Agriculture and Tourism  ICOSEAT 2022

Download or read book Proceedings of the International Conference on Sustainable Environment Agriculture and Tourism ICOSEAT 2022 written by Arifin Dwi Saputro and published by Springer Nature. This book was released on 2023-02-10 with total page 1023 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an open access book. ICOSEAT 2022 was held on July 21–23, 2022 in Bangka Island, one of the wonderful places of Indonesia. Articles in the field of Agroindustry and Appropriate Technology 4.0; Environmental and Mining Engineering; Sustainable Development and Tourism Management; Agriculture and Food Engineering; and Marine, Aquaculture and Biological Science. ICOSEAT provides a forum for Academic, Business and Government to present and discuss topics on recent development in those fields.

Book Simulation of Semiconductor Devices and Processes

Download or read book Simulation of Semiconductor Devices and Processes written by Heiner Ryssel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: SISDEP ’95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.

Book Development of Horizontal Axis Hydrokinetic Turbine Using Experimental and Numerical Approaches

Download or read book Development of Horizontal Axis Hydrokinetic Turbine Using Experimental and Numerical Approaches written by Abdulaziz Mohammed Abutunis and published by . This book was released on 2020 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Hydrokinetic energy conversion systems (HECSs) are emerging as viable solutions for harnessing the kinetic energy in river streams and tidal currents due to their low operating head and flexible mobility. This study is focused on the experimental and numerical aspects of developing an axial HECS for applications with low head ranges and limited operational space. In Part I, blade element momentum (BEM) and neural network (NN) models were developed and coupled to overcome the BEM's inherent convergence issues which hinder the blade design process. The NNs were also used as a multivariate interpolation tool to estimate the blade hydrodynamic characteristics required by the BEM model. The BEM-NN model was able to operate without convergence problems and provide accurate results even at high tip speed ratios. In Part II, an experimental setup was developed and tested in a water tunnel. The effects of flow velocity, pitch angle, number of blades, number of rotors, and duct reducer were investigated. The performance was improved as rotors were added to the system. However, as rotors added, their contribution was less. Significant performance improvement was observed after incorporating a duct reducer. In Part III, a computational fluid dynamics (CFD) simulation was conducted to derive the optimum design criteria for the multi-turbine system. Solidity, blockage, and their interactive effects were studied. The system configuration was altered, then its performance and flow characteristics were investigated. The experimental setup was upgraded to allow for blockage correction. Particle image velocimetry was used to investigate the wake velocity profiles and validate the CFD model. The flow characteristics and their effects on the turbines performance were analyzed"--Abstract, page iv.

Book Steady State and Transient Computational Study of Multiple Hydrokinetic Turbines

Download or read book Steady State and Transient Computational Study of Multiple Hydrokinetic Turbines written by Cosan Daskiran and published by . This book was released on 2016 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: The CFD simulations revealed that the upstream turbine power generation is nearly the same with the single unit power generation for each multiple turbine arrangement. The downstream turbine relative power obtained was 0.18 for the unit placed inline and 0.98 when it was placed outside the wake region. For inline configurations, increasing the stream-wise spacing between the units from 6Dt to 10Dt improved relative power from 0.16 to 0.60, while reducing the rotation speed from 150 rpm to 100 rpm resulted relative power increment from 0.24 to 0.55.

Book Performance Evaluation  Emulation  and Control of Cross flow Hydrokinetic Turbines

Download or read book Performance Evaluation Emulation and Control of Cross flow Hydrokinetic Turbines written by Robert J. Cavagnaro and published by . This book was released on 2016 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. This involves a progression from the analysis of a laboratory-scale prototype turbine to the emulation of a field-scale commercial turbine under realistic control. Understanding of turbine and system component dynamics and performance is leveraged at each phase, with the ultimate goal of enhancing the efficacy of prototype testing and enabling safer, more advanced control techniques. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Definitive evidence linking observable flow events to the onset of system stall is not found. However, a link between turbulent kinetic energy of the flow, the system time constant, and the turbine's dynamic response to turbulence indicates changes in the flow occurring over a horizon of several seconds create the conditions under which system stall is likely. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m^2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical power, and electrical power output of a complete power take-off (PTO) system are utilized to determine the rotor hydrodynamic efficiency (maximum of 17%) and total system efficiency (maximum of 9%). A lab-based dynamometry method yields individual component and total PTO efficiencies, shown to have high variability and strong influence on total system efficiency. The method of tow-testing is found effective, and when combined with PTO characterization, steady-state performance can be inferred solely from inflow velocity and turbine rotation rate. Dynamic efficiencies of PTO components can effect the overall efficiency of a turbine system, a result from field characterization. Thus, the ability to evaluate such components and their potential effects on turbine performance prior to field deployment is desirable. Before attempting control experiments with actual turbines, hardware-in-the-loop testing on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored to better understand power take-off response. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same cross-flow turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed; torque methods required accurate characterization of the motors while speed methods utilized encoder feedback and more accurately tracked turbine dynamics. In a demonstration of an EEM for evaluating a hydrokinetic turbine implementation, a controller is used to track the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with simulation but to deviate at high frequencies. The efficacy of an electromechanical emulator as an accurate representation of a fielded turbine is evaluated. A commercial horizontally-oriented cross-flow turbine is dynamically emulated on hardware to investigate control strategies and grid integration. A representative inflow time-series with a mean of 2 m/s is generated from high-resolution flow measurements of a riverine site and is used to drive emulation. Power output during emulation under similar input and loading conditions yields agreement with field measurements to within 3% at high power, near-optimal levels. Constant tip-speed ratio and constant speed proportional plus integral control schemes are compared to optimal nonlinear control and constant resistance regulation. All controllers yield similar results in terms of overall system efficiency. The emulated turbine is more responsive to turbulent inflow than the field turbine, as the model utilized to drive emulation does not account for a smoothing effect of turbulent fluctuations over the span of the fielded turbine's rotors. The turbine has a lower inertia than the demand of an isolated grid, indicating a secondary source of power with a similar frequency response is necessary if a single turbine cannot meet the entire demand. Major contributions of this work include exploration of the system time constant as an indicator of turbine dynamic response, evidence a turbine experiences system stall probabilistically, a reduced-complexity field performance characterization methodology, and demonstration of the effectiveness of electromechanical emulators at replicating turbine dynamics.

Book Renewable Energy and Wildlife Conservation

Download or read book Renewable Energy and Wildlife Conservation written by Christopher E. Moorman and published by Johns Hopkins University Press. This book was released on 2019-09-10 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bently Wigley, Victoria H. Zero