EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Silicon Carbide Nanostructures

Download or read book Silicon Carbide Nanostructures written by Jiyang Fan and published by Springer. This book was released on 2014-07-26 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the most up-to-date information on the fabrication techniques, properties, and potential applications of low dimensional silicon carbide (SiC) nanostructures such as nanocrystallites, nanowires, nanotubes, and nanostructured films. It also summarizes the tremendous achievements acquired during the past three decades involving structural, electronic, and optical properties of bulk silicon carbide crystals. SiC nanostructures exhibit a range of fascinating and industrially important properties, such as diverse polytypes, stability of interband and defect-related green to blue luminescence, inertness to chemical surroundings, and good biocompatibility. These properties have generated an increasing interest in the materials, which have great potential in a variety of applications across the fields of nanoelectronics, optoelectronics, electron field emission, sensing, quantum information, energy conversion and storage, biomedical engineering, and medicine. SiC is also a most promising substitute for silicon in high power, high temperature, and high frequency microelectronic devices. Recent breakthrough pertaining to the synthesis of ultra-high quality SiC single-crystals will bring the materials closer to real applications. Silicon Carbide Nanostructures: Fabrication, Structure, and Properties provides a unique reference book for researchers and graduate students in this emerging field. It is intended for materials scientists, physicists, chemists, and engineers in microelectronics, optoelectronics, and biomedical engineering.

Book Fabrication and Properties of Silicon Carbide Nanowires

Download or read book Fabrication and Properties of Silicon Carbide Nanowires written by Hyun Woo Shim and published by ProQuest. This book was released on 2008 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Carbide One dimensional Nanostructures

Download or read book Silicon Carbide One dimensional Nanostructures written by Laurence Latu-Romain and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to SiC-based 1D nanostructures, this book explains the properties and different growth methods of these nanostructures. It details carburization of silicon nanowires, a growth process for obtaining original Si-SiC core-shell nanowires and SiC nanotubes of high crystalline quality, thanks to the control of the siliconout-diffusion. The potential applications of these particular nano-objects is also discussed, with regards to their eventual integration in biology, energy and electronics.

Book Nanowire Electronics

Download or read book Nanowire Electronics written by Guozhen Shen and published by Springer. This book was released on 2018-11-23 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive overview of recent advances in developing nanowires for building various kinds of electronic devices. Specifically the applications of nanowires in detectors, sensors, circuits, energy storage and conversion, etc., are reviewed in detail by the experts in this field. Growth methods of different kinds of nanowires are also covered when discussing the electronic applications. Through discussing these cutting edge researches, the future directions of nanowire electronics are identified.

Book Silicon Carbide Biotechnology

Download or read book Silicon Carbide Biotechnology written by Stephen E. Saddow and published by Elsevier. This book was released on 2011-11-14 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices

Book Silicon Carbide Nanowires

Download or read book Silicon Carbide Nanowires written by Ryan Michael Rich and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A highly reproducible method of producing SiC nanowires on a large scale is presented, and the average size of SiC nanowires was 30 nm. XRD revealed that the molar yield increased linearly with time. TEM showed a distribution of nanowire sizes that shifted towards larger diameters as sintering time increased. It is known that vapor-liquid-solid reactions involving a metal catalyst play a role in their formation, and there is further evidence that a vapor-solid mechanism contributes as well. The elastic properties of the following SiC morphologies were explored with pressure applied via a diamond anvil cell: 20 nm grains, 50 nm grains, 130 nm grains, and 30 nm nanowires The bulk modulus of nanowires increased by 8%, while that of 20 nm grains increased 30% in comparison to bulk material. The increased bulk modulus is explained by the core-shell model, where nanoparticles possess one or more distinct regions near the surface with identical crystal symmetry but different interatomic distances. Defects may also affect the bulk modulus, especially in the heavily faulted nanowires. As seen by TEM, planar faults were abundant, and their quantity decreased with decreasing diameter. The extended Convolutional Multiple Whole Profile (eCMWP) analysis was employed to quantitate the defects by XRD. This analysis concluded that twins are the most frequently occurring planar fault with a 2.20% probability of formation, which corresponds to a defect spacing of 38 nm. SiC nanowires are formed with an amorphous outer layer a few nanometers deep. It was concluded that the layer consisted mainly of amorphous SiC, but EDS confirmed that this structure was rich in oxygen. FTIR confirmed the presence of Si-O bands which increased in population with thermal treatment. The surface of SiC nanowires was modified by etching in HF and HNO3 acids. Silica bands were reduced and functional groups appeared after treatment. XRD found that grain size increased by 186% and dislocations decreased by 91% with treatment by nitric acid. It is proposed that modification of the surface leads to a reduction of surface stresses, thereby increasing the apparent grain size and reducing dislocations.

Book Silicon Carbide

Download or read book Silicon Carbide written by Sofia H. Vanger and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide (SiC) is well known for its excellent material properties, high durability, high wear resistance, light weight and extreme hardness. This combination of properties makes them ideal candidates for tribological, semiconductor and MEMs, and optoelectronic applications. However, SiC is also known for its low fracture toughness, extreme brittleness and poor machinability. This book presents topical research data in the study of silicon carbide, including the etching and thin film formation of silicon carbide using highly reactive gases; production and characterisation of SiC particles; microstructure of silicon carbide nanowires; ductile regime material removal of silicon carbide; limitation of SiC in the liquid-state processing of Al-MMC; and the effects of ion implantation in silicon carbide.

Book Synthesis of the Silicon Carbide Nanowires and Their Applications

Download or read book Synthesis of the Silicon Carbide Nanowires and Their Applications written by 邱勝正 and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multifunctional Lightweight Structures of Silicon Carbide Nanowires

Download or read book Multifunctional Lightweight Structures of Silicon Carbide Nanowires written by Yu Chen and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon based Nanomaterials

Download or read book Silicon based Nanomaterials written by Handong Li and published by Springer Science & Business Media. This book was released on 2013-10-02 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.

Book Silicon and Silicon Carbide Nanowires

Download or read book Silicon and Silicon Carbide Nanowires written by John Paul Alper and published by . This book was released on 2014 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: For applications in mobile and remote sensing platforms, microsupercapacitors are attractive energy storage devices due to their robust lifetimes and high specific power capacity. Utilization of green electrolytes in these devices reduces environmental impact and simplifies packaging by avoiding the stringent oxygen and moisture free conditions required for organic and ionic liquid based electrolytes. Porous silicon nanowire based microsupercapacitor electrode materials are promising for on chip applications using an environmentally benign aqueous electrolyte, 1 M KCl, however they are prone to oxidation. A silicon carbide coating was found to mitigate this issue. The fabrication techniques, involving low-temperature electroless etching of silicon, are compatible with current integrated circuit processing methods and may be readily integrated at the micro device level. The electrode materials are in good electrical contact with the underlying substrate and require no additional current collector. The base porous silicon nanowires are coated with a thin silicon carbide passivation layer by low pressure chemical vapor deposition. The demonstrated capacitance of the electrode materials, ~1700 [mu]F/cm2 projected area, is comparable to other carbon based microsupercapacitor electrodes, remains stable over many charge/discharge cycles, and maintains capacitive behavior over a wide range of charge/discharge rates. An improved passivation method for the porous silicon nanowires has also been developed. The selective coating procedure deposits an ultra-thin (~ 1-3 nm) carbon sheath over the nanowires and passivates them. The ultra-thin nature of the coating enables solvent access to the pore area and hence a large improvement of active specific surface over the SiC coated PSiNWs discussed above. The electrochemical performance of these coated nanowires is characterized in both an aqueous electrolyte and an ionic liquid electrolyte. Specific capacitance values reaching 325 mF cm 2 are achieved in ionic liquid, and calculations indicate that the theoretical maximum capacitance of the pristine wires is reached. TEM studies confirm the coating thickness and its conformality. Raman spectroscopy indicates that the carbon in the coating is mainly sp2 hybridized, with corresponding high conductivity. At the time of writing, these materials represent the largest specific energy microsupercapacitor electrode published. A test device is prepared and demonstrated powering an LED. The testing results of silicon carbide (SiC) nanowires (NW) as an electrode material for micro-supercapacitors is described. SiC NWs are grown on a SiC thin film coated with a thin Ni catalyst layer via chemical vapor deposition. A specific capacitance of ~240 μF cm-2 is demonstrated. Charge-discharge studies demonstrate the SiC nanowires exhibit exceptional stability, with 95% capacitance retention after 2×105 charge/discharge cycles in an environmentally benign, aqueous electrolyte. Doping of the nanowires with nitrogen through the addition of 5 at% ammonia to the precursor gas flow rate improves the conductivity of the nanowire films by over an order of magnitude leading to increased power capabilities. A method to transfer silicon and silicon carbide nanowire arrays to arbitrary substrates while maintaining electrical contact through the entire array is elucidated. The nanowires are grown on graphene sheets on SiO2 coupons. The graphene acts as both the flexible material for maintaining structural continuity and electrical contact through the array during transfer. The SiO2 acts as the sacrificial growth substrate which is etched after growth in order to release the nanowire/graphene hybrid. The nanowire/graphene hybrids are structurally characterized by XRD and electron microscopy. Good electrical contact is confirmed through testing of the SiCNW/graphene hybrids as supercapacitor electrode materials in an aqueous electrolyte. The specific capacitance, ~340 mF cm-2, is similar to SiCNW arrays grown on oxide while the electrical conductivity is improved and cycling stability tests show less than a 1% decrease in capacitance after 10,000 cycles.

Book Structural and Optical Properties of Silicon silicon Carbide Nanowires Grown by Hot wire Chemical Vapour Deposition

Download or read book Structural and Optical Properties of Silicon silicon Carbide Nanowires Grown by Hot wire Chemical Vapour Deposition written by Nurul Jannah Mohd Noor and published by . This book was released on 2014 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Raman Analysis of Silicon Carbide Nanowires

Download or read book Raman Analysis of Silicon Carbide Nanowires written by Yingwei Zhou and published by . This book was released on 2002 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Carbide Nanostructures

Download or read book Silicon Carbide Nanostructures written by Ji-Yang Fan and published by . This book was released on 2014-08-31 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Carbide Biotechnology

Download or read book Silicon Carbide Biotechnology written by Stephen E. Saddow and published by Elsevier. This book was released on 2016-03-07 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to further advance biomedical applications. SiC devices offer high power densities and low energy losses, enabling lighter, more compact, and higher efficiency products for biocompatible and long-term in vivo applications, including heart stent coatings, bone implant scaffolds, neurological implants and sensors, glucose sensors, brain-machine-interface devices, smart bone implants, and organ implants. This book provides the materials and biomedical engineering communities with a seminal reference book on SiC for developing technology, and is a resource for practitioners eager to identify and implement advanced engineering solutions to their everyday medical problems for which they currently lack long-term, cost-effective solutions. Discusses the properties, processing, characterization, and application of silicon carbide biomedical materials and related technology Assesses literature, patents, and FDA approvals for clinical trials, enabling rapid assimilation of data from current disparate sources and promoting the transition from technology R&D, to clinical trials Includes more on applications and devices, such as SiC nanowires, biofunctionalized devices, micro-electrode arrays, heart stent/cardiovascular coatings, and continuous glucose sensors, in this new edition