EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book MIMO Radar Signal Processing

Download or read book MIMO Radar Signal Processing written by Jian Li and published by Wiley-IEEE Press. This book was released on 2009 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking,association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.

Book Signal Processing Algorithms for MIMO Radar

Download or read book Signal Processing Algorithms for MIMO Radar written by Chun-Yang Chen and published by . This book was released on 2009 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MIMO Radar  Theory and Application

Download or read book MIMO Radar Theory and Application written by Jamie Bergin and published by Artech House. This book was released on 2018-03-31 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive new resource provides in-depth and timely coverage of the underpinnings and latest advances of MIMO radar. This book provides a comprehensive introduction to MIMO radar and demonstrates it’s utility in real-world applications, then culminates with the latest advances in optimal and adaptive MIMO radar for enhanced detection and target ID in challenging environments. Signal processing prerequisites are explained, including radar signals, orthogonal waveforms, matched filtering, multi-channel beam forming, and Doppler processing. This book discusses MIMO radar signal model, antenna properties, system modeling and waveform alternatives. MIMO implantation challenges are covered, including computational complexity, adaptive clutter mitigation, calibration and equalization, and hardware constraints. Applications for GMTI radar, OTH radar, maritime radar, and automotive radar are explained. The book offers an introduction to optimum MIMO radar and includes details about detection, clutter, and target ID. Insight into adaptive MIMO radar and MIMO channel estimation is presented and techniques and illustrative examples are given. Readers find exclusive flight testing data from DARPA. The breadth of coverage in this all-inclusive resource makes it suitable for both practicing engineers and advanced researchers. The book concludes with discussions on areas for future research.

Book Signal Design for Modern Radar Systems

Download or read book Signal Design for Modern Radar Systems written by Mohammad Alaee-Kerahroodi and published by Artech House. This book was released on 2022-11-30 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives you a comprehensive overview of key optimization tools that can be used to design radar waveforms and adaptive signal processing strategies under practical constraints -- strategies such as power method-like iterations, coordinate descent, and majorization-minimization – that help you to meet the more and more stressing sensing system requirements. The book walks you through how radar waveform synthesis is obtained as the solution to a constrained optimization problem such as finite energy, unimodularity (or being constant-modulus), and finite or discrete-phase (potentially binary) alphabet, which are dictated by the practical limitations of the real systems. Several approaches in each of these broad frameworks are detailed and various applications of these optimization techniques are described. Focusing on a holistic approach rather than a problem-specific approach, the book shows you what you need to effectively formulate waveform design and understand the flexibility of the framework for adapting to your own specific needs. You’ll have full access to the tools and knowledge you need to design waveform with optimized correlation/cross-correlation properties for SISO/SIMO and MIMO radars, taking into account spectral constraints for cognitive rads, as well as coexistence with communications and mitigate possible Doppler and quantization errors, and more. The book also includes representative software codes that further help you generate the described solutions. With its unique style of covering mathematical results along with their applications from diverse areas, this is a much-needed, detailed handbook for industry researchers, scientists and designers including medical, marine, defense, and automotive companies. It is also an excellent resource for advanced courses on radar signal processing.

Book Distributed Sensing for MIMO Radar Systems

Download or read book Distributed Sensing for MIMO Radar Systems written by Christos V. Ilioudis and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research presented in this thesis deals with the concepts of distributed sensing for multiple-input multiple-output (MIMO) radar systems and important signal processing algorithms with regard to multiple sensing optimisations. These novel algorithms include an edge detection scheme based on the phase stretch transform (PST) for synthetic aperture radar (SAR) imaging systems, the application of the fractional Fourier transform (FrFT) in generating new waveform libraries and the synthesis of a generalised MIMO ambiguity function (AF) based on the Kullback-Leibler divergence (KLD). In particular, a new edge detection algorithm for SAR images is proposed. This method is an enhanced scheme that is based on the phase stretch transform (PST). The high-accuracy of the presented edge detection method is tested and verified experimentally using two SAR image datasets. Experimental results show that thresholding and further morphological operation leads in excellent edge extraction despite the noise embedded into the image. Including PST into the structure of the edge detection algorithm is proved to be very advantageous, since the efficiency in edge determining could be improved by means of tuning the strength and wrap parameters of PST phase kernel. It is shown that the proposed method is very effective and capable to remove embedded noise and introduced artefacts even from image parts corresponding to the surface of the sea. A novel waveform design scheme is proposed to create waveform libraries employing the FrFT. Additionally an efficient algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) is developed to reconstruct the proposed fractional waveform libraries under constant envelope (CE) constrain. This efficient technique is capable of generating novel libraries of phase-coded waveforms through FrFT and optimise the signal retrieval, while the signal waveforms retain their constant modulus. Specifically, the reconstruction of sequences from the FrFTbased waveforms is achieved by means of the error reduction algorithm (ERA). The performance of this new method is evaluated via simulation analysis, showing the good properties of the waveforms in terms of AF performance parameters and in attaining high diversity between waveforms for both fractional and CE fractional libraries. In addition, the applicability of the derived fractional waveforms is experimentally validated, while their performance is evaluated through comparing with conventional techniques in a distributed MIMO radar scenario. Moreover, a novel-multiplexing scheme also based on the FrFT is introduced enabling radar systems to operate in a message exchange mode via embedding the required information into fractional waveforms. The efficiency of the proposed waveform design is evaluated regarding the AF properties of the communicating radar (Co-Radar) waveform. A new, generalised AF is presented based on the KLD and applied in a MIMO radar signal model. The proposed MIMO AF can be factorised into auto-correlation and cross-correlation signal matrices, and channel correlation matrices. Moreover, it is shown that the proposed MIMO AF maximally stretches between 0 and 1, while also being flexible for various geometrical and operating signal configurations. The relationship of the proposed MIMO AF with other definition is also examined, showing that it reduces to the traditional Woodward definition when the same signal model is assumed. In addition, the behaviour of the proposed MIMO AF is investigated for different target placements and operating waveforms highlighting the advantages of each configuration. Finally, the good performance of the AF is demonstrated in a simulated MIMO radar system.

Book Signal Processing for Joint Radar Communications

Download or read book Signal Processing for Joint Radar Communications written by Kumar Vijay Mishra and published by John Wiley & Sons. This book was released on 2024-04-09 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal Processing for Joint Radar Communications A one-stop, comprehensive source for the latest research in joint radar communications In Signal Processing for Joint Radar Communications, four eminent electrical engineers deliver a practical and informative contribution to the diffusion of newly developed joint radar communications (JRC) tools into the sensing and communications communities. This book illustrates recent successes in applying modern signal processing theories to core problems in JRC. The book offers new results on algorithms and applications of JRC from diverse perspectives, including waveform design, physical layer processing, privacy, security, hardware prototyping, resource allocation, and sampling theory. The distinguished editors bring together contributions from more than 40 leading JRC researchers working on remote sensing, electromagnetics, optimization, signal processing, and beyond 5G wireless networks. The included resources provide an in-depth mathematical treatment of relevant signal processing tools and computational methods allowing readers to take full advantage of JRC systems. Readers will also find: Thorough introductions to fundamental limits and background on JRC theory and applications, including dual-function radar communications, cooperative JRC, distributed JRC, and passive JRC Comprehensive explorations of JRC processing via waveform analyses, interference mitigation, and modeling with jamming and clutter Practical discussions of information-theoretic, optimization, and networking aspects of JRC In-depth examinations of JRC applications in cutting-edge scenarios including automotive systems, intelligent reflecting surfaces, and secure parameter estimation Perfect for researchers and professionals in the fields of radar, signal processing, communications, information theory, networking, and electronic warfare, Signal Processing for Joint Radar Communications will also earn a place in the libraries of engineers working in the defense, aerospace, wireless communications, and automotive industries.

Book MIMO Radar

    Book Details:
  • Author : Jamie Bergin
  • Publisher : Artech House Publishers
  • Release : 2018
  • ISBN : 9781630813420
  • Pages : 0 pages

Download or read book MIMO Radar written by Jamie Bergin and published by Artech House Publishers. This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive new resource provides in-depth and timely coverage of the underpinnings and latest advances of MIMO radar. This book provides a comprehensive introduction to MIMO radar and demonstrates it's utility in real-world applications, then culminates with the latest advances in optimal and adaptive MIMO radar for enhanced detection and target ID in challenging environments. Signal processing prerequisites are explained, including radar signals, orthogonal waveforms, matched filtering, multi-channel beam forming, and Doppler processing. This book discusses MIMO radar signal model, antenna properties, system modeling and waveform alternatives. MIMO implantation challenges are covered, including computational complexity, adaptive clutter mitigation, calibration and equalization, and hardware constraints.Applications for GMTI radar, OTH radar, maritime radar, and automotive radar are explained. The book offers an introduction to optimum MIMO radar and includes details about detection, clutter, and target ID. Insight into adaptive MIMO radar and MIMO channel estimation is presented and techniques and illustrative examples are given. Readers find exclusive flight testing data from DARPA. The breadth of coverage in this all-inclusive resource makes it suitable for both practicing engineers and advanced researchers. The book concludes with discussions on areas for future research.

Book MIMO Radar Signal Processing

Download or read book MIMO Radar Signal Processing written by Jian Li and published by John Wiley & Sons. This book was released on 2008-10-10 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking,association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.

Book Adaptive MIMO Radar for Target Detection  Estimation  and Tracking

Download or read book Adaptive MIMO Radar for Target Detection Estimation and Tracking written by Sandeep Gogineni and published by . This book was released on 2012 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: We develop and analyze signal processing algorithms to detect, estimate, and track targets using multiple-input multiple-output (MIMO) radar systems. MIMO radar systems have attracted much attention in the recent past due to the additional degrees of freedom they offer. They are commonly used in two different antenna configurations: widely-separated (distributed) and colocated. Distributed MIMO radar exploits spatial diversity by utilizing multiple uncorrelated looks at the target. Colocated MIMO radar systems offer performance improvement by exploiting waveform diversity. Each antenna has the freedom to transmit a waveform that is different from the waveforms of the other transmitters. First, we propose a radar system that combines the advantages of distributed MIMO radar and fully polarimetric radar. We develop the signal model for this system and analyze the performance of the optimal Neyman-Pearson detector by obtaining approximate expressions for the probabilities of detection and false alarm. Using these expressions, we adaptively design the transmit waveform polarizations that optimize the target detection performance. Conventional radar design approaches do not consider the goal of the target itself, which always tries to reduce its detectability. We propose to incorporate this knowledge about the goal of the target while solving the polarimetric MIMO radar design problem by formulating it as a game between the target and the radar design engineer. Unlike conventional methods, this game-theoretic design does not require target parameter estimation from large amounts of training data. Our approach is generic and can be applied to other radar design problems also. Next, we propose a distributed MIMO radar system that employs monopulse processing, and develop an algorithm for tracking a moving target using this system. We electronically generate two beams at each receiver and use them for computing the local estimates. Later, we efficiently combine the information present in these local estimates, using the instantaneous signal energies at each receiver to keep track of the target. Finally, we develop multiple-target estimation algorithms for both distributed and colocated MIMO radar by exploiting the inherent sparsity on the delay-Doppler plane. We propose a new performance metric that naturally fits into this multiple target scenario and develop an adaptive optimal energy allocation mechanism. We employ compressive sensing to perform accurate estimation from far fewer samples than the Nyquist rate. For colocated MIMO radar, we transmit frequency-hopping codes to exploit the frequency diversity. We derive an analytical expression for the block coherence measure of the dictionary matrix and design an optimal code matrix using this expression. Additionally, we also transmit ultra wideband noise waveforms that improve the system resolution and provide a low probability of intercept (LPI).

Book Spectrum Sharing Between Radars and Communication Systems

Download or read book Spectrum Sharing Between Radars and Communication Systems written by Awais Khawar and published by Springer. This book was released on 2017-06-12 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents spectrum sharing efforts between cellular systems and radars. The book addresses coexistence algorithms for radar and communication systems. Topics include radar and cellular system models; spectrum sharing with small radar systems; spectrum sharing with large radar systems; radar spectrum sharing with coordinated multipoint systems (CoMP); and spectrum sharing with overlapped MIMO radars. The primary audience is the radar and wireless communication community, specifically people in industry, academia, and research whose focus is on spectrum sharing. The topics are of interest for both communication and signal processing technical groups. In addition, students can use MATLAB code to enhance their learning experience.

Book HYBRID MIMO PHASED ARRAY RADAR RECEIVE SIGNAL PROCESSING

Download or read book HYBRID MIMO PHASED ARRAY RADAR RECEIVE SIGNAL PROCESSING written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : The Hybrid MIMO Phased Array Radar (HMPAR) is a multi-sensor radar architecture that merges together the concepts of a traditional phased array radar with the colocated Multiple-Input Multiple-Output (MIMO) radar. This radar system comprises a large number of transmit and receive elements, MP, organized into M sub-arrays of P elements each. The sub-arrays can be electronically steered in different directions and driven by separate transmit waveforms. Previous works focused on transmit signals strategies and beampatterns for two possible modes of operation (called Mode 1 and Mode 2). Here we concentrate on the receive signal processing algorithms and performance. Assuming that a non-moving, non-fluctuating target with an unknown complex target reflectivity is present in the field of view, we derive the Cramer-Rao Lower Bounds (CRLB), a performance bound on the variance of any unbiased target location estimator. In Mode 1, the HMPAR is used for broad beams and employs quasi-orthogonal signals. Results vary depending on the fluctuations of the beampattern. In Mode 2, the radar is used for narrower beampatterns and employs transmit signals which allow a rapid scan of the field of view in one pulse. In this case, when the sub-arrays are steered towards the true target location results show that the lowest CRLB values are obtained with low M and high P. When the HMPAR steers its beam towards the target's presumed location, but the target is elsewhere, results vary depending on the size of the field of view. For both modes of operation, we describe potential target detection techniques, as well as providing a possible target location estimation algorithm. Specifically, by discretizing the field of view into N points, we determine the test statistic at each location and the location with the maximum value is considered the estimated target location. Afterwards, we compare the estimation algorithm performance against the CRLB. Results show that, as the SNR increases, the mean square error of the estimation algorithm reaches the performance bounds, provided by the CRLB.

Book Radar Signal Analysis and Processing Using MATLAB

Download or read book Radar Signal Analysis and Processing Using MATLAB written by Bassem R. Mahafza and published by CRC Press. This book was released on 2016-04-19 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering radar-related software for the analysis and design of radar waveform and signal processing, Radar Signal Analysis and Processing Using MATLAB provides a comprehensive source of theoretical and practical information on radar signals, signal analysis, and radar signal processing with companion MATLAB code. Aft

Book Signal Processing of Airborne Radar Stations

Download or read book Signal Processing of Airborne Radar Stations written by Vereshchagin A.V. and published by Springer Nature. This book was released on 2019-08-29 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights new methods and parametric algorithms for the digital coherent processing of signals in airborne radar systems located on air vehicles. Using the autoregressive (AR) model, it delivers more accurate danger assessments for flight in wind shear and atmospheric turbulence, while also suggesting how they could be implemented. Given its scope, the book is intended for technical experts whose work involves the development, production and operation of airborne radio-electronic systems.

Book Design and Analysis of Superresolution Algorithm and Signal Separation Technique for an OFDM based MIMO Radar

Download or read book Design and Analysis of Superresolution Algorithm and Signal Separation Technique for an OFDM based MIMO Radar written by Thanh Thuy Nguyen and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, the concept of MIMO radar has been proposed. MIMO radar has the capability to transmit orthogonal (or incoherent) waveforms at multiple transmit antennas. It offers promising potentials for multipath fading, resolution enhancement and interference suppression. Many research about MIMO radar in signal processing have been conducted. However, the implementation of MIMO radar in practice is still not common. In this thesis, the SISO OFDM radar and communication system (RadCom), a previous project at Institut für Hochfrequenztechnik und Elektronik, KIT, Germany, is extended to MIMO configuration using the idea of spectrally interleaved multi-carrier signals to estimate the direction of arrival of targets in 2D and 3D radar. The main aim of this thesis is to implement and evaluate a MIMO OFDM-based radar system. The thesis consits of two parts, the software and hardware part. In the first part of the thesis, the MIMO radar is studied. A signal modeling is derived along with the analysis of suitable antenna geometries for 2D and 3D radar. The MIMO radar with the ability to form vitual array can increase significantly the resolution of direcion-of-arrival (DOA). For that purpose, numerous algorithms based on different mathematical approaches exist. The numerical results show that the MUSIC algorithm based on subspace method is simple to implement and have good resolution. We combine the OFDM-based signal model with MUSIC to perform 2D and 3D radar sensing. The DOA estimation with MUSIC along with the simulation results are presented. The second half of this thesis focuses on hardware design for MIMO radar systems. A RF front end for 4 transmitters with direct conversion architecture was considered. The transmitters include low pass filters (LPFs), I/Q upcoverter, PLL synthesizer, 4:1 Wilkinson divider. Inverse Chebyshev LPFs at 50 Mhz with lumped elements were built and measured. In addition, a sufficient 4:1 Wilkinson divider was simulated and fabricated. The other individual elements of the transmitter was measured and analyzed. Several measurement have been taken to test one whole transmitter. In addition, the signal generated by the FPGA, which is planned to intergrate with the transmitters, are analyzed. Finally, the possible future works have been pointed out.

Book Signal Processing and Optimisation of MIMO Radar

Download or read book Signal Processing and Optimisation of MIMO Radar written by Luke Anthony Balzan and published by . This book was released on 2012 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a background to and a series of interesting and novel results for a particular proposed model for narrowband MIMO radar systems. The proposed model is both novel and unique, comprising closely-spaced antenna arrays that transmit orthogonally-coded waveforms, and can be seen as a logical extension to existing models for conventional single-input, single-output radar systems. Signal processing and optimisation is performed on the proposed system with a view to yield enhanced estimation and tracking performance. The proposed signal and likelihood estimation models have been thoroughly defined, with a number of important approximations and simplifications to the models gained through the use and exploitation of orthogonally-coded waveforms. All approximations and assumptions have been justified through the use of simulated examples. The Cramér-Rao bound for the models is derived and verified as correct through the use of simulated data. Through comparison of the Cramér-Rao bound to statistical estimation variances obtained through extensive simulations, the proposed models are shown to be efficient, thereby demonstrating the validity of the bound to be used as performance metric for optimisation. With the knowledge that the proposed MIMO radar system is efficient, the Cramér-Rao bound is used as a measure for estimation performance optimisation. The bound is seen to be dependent on the choice of orthogonally-coded waveforms used in the MIMO radar system, and by framing the selection of codes as a convex optimisation problem, codes can be chosen to minimise the Cramér-Rao bound, and since the system has been shown to be efficient, this also reduces estimate variance, thus improving the estimation performance of the system. This optimisation problem has been examined and simulated extensively, with simulated data substantiating the claims of performance improvement. Finally, this thesis explores the idea of tracking for MIMO radar. A Kalman filter based tracker is proposed and simulated for the MIMO radar system. Extending the convex optimisation scheme discussed above, a similar optimisation problem is formed for the case of MIMO radar tracking. The optimisation problem has been simulated to select orthogonal codes for transmitting based on the predicted target motion, obtained from the Kalman filter tracker. By basing the optimisation on the predicted tracker outputs, an action-perception cycle for MIMO radar is established, where the system is able to adapt to its surroundings based on it's current and predicted view of the environment. Simulations have been used to observe the performance improvements of implementing the optimisation scheme, and thereby showing the action-perception cycle for MIMO radar at work.

Book Signal Processing for MIMO Radars

Download or read book Signal Processing for MIMO Radars written by Chin yuan Chong and published by . This book was released on 2011 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Multiple-Input Multiple Output (MIMO) radar can be broadly defined as a radar system employing multiple transmit waveforms and having the ability to jointly process signals received at multiple receive antennas. In terms of configurations, the antennas can be widely separated or co-located. The first part of the thesis is on detection under Gaussian and non-Gaussian environments using a MIMO radar which contains several widely separated subarrays with one or more elements each. Two different situations are considered. Firstly, we consider that the interference is Gaussian but correlation between subarrays can arise due to insufficient spacing and the imperfect orthogonality of waveforms. Secondly, we consider that the interference is non-Gaussian, a situation which arises under sea and ground clutter and when the resolution is very high. The second part is on the application of MIMO techniques to Space-Time Adaptive Processing (STAP). The coherent MIMO configuration is studied in terms of antenna element distribution and inter-element spacing to improve detection and estimation performance. A preliminary study is also done on the use of spatial diversity to improve detection stability w.r.t. target Radar Cross Section (RCS) fluctuations and velocity direction changes.

Book Detecting and Classifying Low Probability of Intercept Radar

Download or read book Detecting and Classifying Low Probability of Intercept Radar written by Phillip E. Pace and published by Artech House. This book was released on 2009 with total page 893 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This comprehensive book presents LPI radar design essentials, including ambiguity analysis of LPI waveforms, FMCW radar, and phase-shift and frequency-shift keying techniques. Moreover, you find details on new OTHR modulation schemes, noise radar, and spatial multiple-input multiple-output (MIMO) systems. The book explores autonomous non-linear classification signal processing algorithms for identifying LPI modulations. It also demonstrates four intercept receiver signal processing techniques for LPI radar detection that helps you determine which time-frequency, bi-frequency technique best suits any LPI modulation of interest."--Publisher.